PoS - Proceedings of Science
Volume 467 - Loops and Legs in Quantum Field Theory (LL2024) - Parallel 3
Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation
S. Jones, A. Olsson and T. Stone*
Full text: pdf
Published on: September 17, 2024
Abstract
We present selected examples demonstrating an alternative approach to contour deformation for numerically computing loop integrals in the Minkowski regime. This method focuses on identifying singular hypersurfaces (varieties of the $\mathscr{F}$ polynomial) and mapping them to known points which can then be resolved by employing blow-ups/sector decomposition techniques, thereby avoiding the need for contour deformation. Using this technique, we achieve improved convergence properties without the need for contour deformation, which is known to significantly increase the complexity of the integrand by introducing, for example, derivatives of the $\mathscr{F}$ polynomial and complicated Jacobians. We highlight that while we have only tested the approach on selected one-, two- and three-loop massless and one-loop massive examples, it shows promise for practical applications, offering potential benefits over the traditional approach. Evaluation times are compared with existing contour deformation implementations to illustrate the performance of this alternative method.
DOI: https://doi.org/10.22323/1.467.0036
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.