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1. Introduction

The calculation of large rational functions is a central bottleneck in multi-loop amplitude
computations, and has indeed been discussed in many talks at this Loops And Legs conference.
As will be described shortly, popular approaches for calculating these rational functions include,
on the one hand, numerical interpolation methods to bypass large intermediate expressions, and on
the other hand, symbolic methods exploiting partial fractioning to produce major simplifications
in the size of (intermediate and final) expressions. The subject of this conference proceedings
paper, based on my article [1], is a new technique to interpolate rational functions directly in
partial-fractioned form, thereby combining the benefits of the two approaches. The technique uses
evaluations at special integer points chosen for their properties under a so-called 𝑝-adic absolute
value. The rational functions are interpolated one partial-fractioned term at a time, exploiting the
simplification provided by partial-fractioning and exposing hints of additional patterns and structure
that can be exploited in future work.

In symbolic computations involving arithmetic on polynomials or rational functions, the appear-
ance of large intermediate expressions is a ubiquitous problem. Numerical interpolation techniques
to bypass this problem have a long history in computer algebra [2–6] and have in recent years
been directly adopted with great success by the particle physics community [7–11]. They work by
replacing symbolic arithmetic with numerical arithmetic in a suitable field, e.g. the (prime) finite
fields F𝑝 or the 𝑝-adic fields Q𝑝, and then reproducing the exact symbolic result of a sequence of
arithmetic operations by interpolating it from sufficiently many numerical samples. In amplitude
calculations, the interpolation itself is typically quick and the computational cost of the approach is
largely determined by the time spent performing numerical evaluations, which is in turn determined
by the size and complexity of the final result to be interpolated.

In high-energy physics applications of such numerical interpolation techniques, several opti-
misations have been explored. The number of probes required can be reduced by a factor of 2
by guessing [12, 13] the common denominator of a rational function. Refs. [14, 15] reconstruct
partial-fractioned expressions from very high-precision floating-point evaluations. Within a finite-
field context, some benefits may also be obtained by reconstructing in one variable at a time and
performing single-variable partial fractioning at some intermediate stages [5, 16–20], possibly in
conjunction with expanding in 𝜖 , where 𝐷 = 4−2𝜖 is the spacetime dimension variable. Techniques
based on algebraic geometry and evaluations in Q𝑝 have been proposed [21–23] for eliciting infor-
mation about the numerator of a rational function prior to performing a finite-field reconstruction,
and Ref. [24] mentions combining these with the methods of Ref. [14]. The interpolation itself can
sometimes be performed in quasi-linear time by applying the Fast Fourier Transform to evaluations
performed at roots of unity [25].

In parallel with the above numerical techniques, recent years have seen symbolic multiple-
variable partial fractioning algorithms employed to simplify the final (and also intermediate) results
of heavy calculations, producing simplifications by up to 2 orders of magnitude [13, 26–32]. An
example is shown in Table 1, obtained by taking the largest rational function appearing in the
integration-by-parts (IBP) table for the 2-loop full-colour QCD amplitudes for 𝑝𝑝 → 𝛾𝛾 𝑗 [29]
and partial fractioning it using the MultivariateApart [13] library. In the present work, this
function will be denoted 𝑅∗ and it will be used as a working example throughout the paper. It
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Table 1: Simplification of 𝑅∗ under partial fractioning. Common-denominator form has numerator fully
expanded and denominator fully factorised. Partial-fractioned form is obtained using MultivariateA-
part [13] with option UseFormProgram->True. (See Table 2 for results obtained in this work by numerical
interpolation directly in partial-fractioned form.) Sizes are as reported using ByteCount in Mathematica.
Number of free parameters is obtained by counting the number of terms in the fully-expanded numerator(s).

Form of expression Size Parameters to fit
Common-denominator 605 MB 1,369,559

Partial-fractioned 4 MB 14,558

can be seen from the table that the partial-fractioned form of 𝑅∗ is O(100) times smaller than its
common-denominator form.

Although it is well known that the denominator of the common-denominator form of IBP
expressions like 𝑅∗ usually factorise into simple polynomial factors, this alone does not explain
the simplification in Table 1. To see this, several rational functions were considered, taken from
the solutions to the 2-loop 5-point massless non-planar IBP equations. For each rational function
𝑅, a second rational function �̃� was constructed by taking 𝑅 in common-denominator form and
replacing with random numbers all coefficients in its fully-expanded numerator, while leaving the
denominator unchanged. It was observed that each 𝑅 simplifies upon partial fractioning, and the
simplification factor is largest for the largest rational functions. Yet upon partial fractioning �̃�, no
simplification occurs; indeed the partial-fractioned form of �̃� is typically slightly larger than its
common-denominator form, regardless of whether it is measured using ByteCount or the number
of free numerator parameters. It can therefore be concluded that the above-mentioned simplification
of 𝑅∗ upon partial fractioning does not occur for generic rational functions, but is instead a special
property of 𝑅∗, which is conjectured here to generalise to many IBP and amplitude expressions.1

In this work, a new technique is presented to interpolate rational functions directly in partial-
fractioned form, to improve the speed (and hence reach) of loop calculations. The technique uses
𝑝-adic probes to reconstruct the rational functions one partial-fractioned term at a time, giving
a powerful capability to better identify, understand, and exploit the structures in these functions.
Indeed, it will be seen in sec. 3 that the technique requires 25 times fewer numeric (Q𝑝) probes than
conventional (F𝑝-based) reconstruction, and leads to a 130-fold reduction in the size of the final
result. The results furthermore reveal hints of further patterns and it is therefore expected that the
technique will prove to be a valuable tool to study and exploit them.

To understand the reason for the simplification in Table 1 and guide a strategy for exploiting it,
the program MultivariateApart [13] was applied to several examples of 𝑅 and �̃�. In each case
the resulting expressions

𝑅 =
∑︁
𝑖

𝑛𝑖

𝑑𝑖
, (1)

1We emphasise that the selection of 𝑅∗ as working example was not on the basis of any such properties, but was
on the contrary because it is an exceedingly complicated expression that is on the boundary of current computational
techniques.
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�̃� =
∑︁
𝑗

�̃� 𝑗

𝑑 𝑗

(2)

were compared. For all the examples studied, it was observed that the sum in eq. (1) contains fewer
terms than the sum in eq. (2). Furthermore, all of the terms in eq. (1) also appear in eq. (2), albeit
with different numerators—in other words, {𝑑𝑖} is a subset of {𝑑 𝑗}. It was furthermore noted that
if the partial-fractioned terms that are present in �̃� but vanish in 𝑅 could be identified in advance,
it would give a large simplification. In the case of 𝑅∗, it was estimated that this simplification
would be a factor of 28 compared to the common-denominator form, reducing the number of free
parameters from 1,369,559 to 48,512. For this reason, the core aim of the method presented in sec. 2
is to identify, as cheaply as possible, which partial-fractioned terms vanish. The remaining factor
of 48,512

14,558 ≈ 3.3 between this and the figure in Table 1 arises because many of the partial-fractioned
terms in eq. (1) have numerators containing fewer terms than the most generic polynomial that
could be expected; the exploitation of this further simplification is left to future work. In addition,
as already mentioned, the results (see sec. 3) suggest that further patterns and structure are present,
which could be explored and exploited in future work to obtain significant further speed-ups.

2. Method

In order to exploit the observations from sec. 1, a method was devised to reconstruct rational
functions directly in partial-fractioned form eq. (1), one partial-fractioned term 𝑛𝑖

𝑑𝑖
at a time. A set of

all possible denominators {𝑑𝑖} is straight-forward to determine by examining the easily-obtainable
denominator [12, 13] of the common-denominator-form expression. As explained in sec. 1, the
speedup in this paper will arise because for many of the possible denominators 𝑑𝑖 , the corresponding
𝑛𝑖 is zero. Reconstructing one partial-fractioned term at a time ensures that if a partial-fractioned
term vanishes, one can notice this cheaply and avoid reconstructing its numerator. A key further
advantage of reconstructing one partial-fractioned term at a time is that our method will scale well
for even larger rational functions than 𝑅∗, because it allows interpolation to be performed without
needing to invert large systems of linear equations.

Reconstructing one partial-fractioned term at a time also has other benefits, which are foreseen
here but will be left to further work: for instance, noting that the bottleneck in cutting-edge
calculations is sometimes a very small number of particularly large rational functions, it can be
expected that reconstructing one partial-fractioned term at a time would give maximum scope for
on-the-fly observation of patterns that can be exploited in the remaining partial-fractioned terms.
Examples of this might be the optimal choice of numerator variables for particular combinations
of denominator factors, or the appearance of commonly-occurring integer or polynomial prefactors
in the numerators of some partial-fractioned terms, or even (as is observed post-hoc in sec. 3) the
appearance of identical numerators in several partial-fractioned terms. Additionally, this method of
reconstructing one partial-fractioned term at a time can provide a powerful tool to better analytically
understand—and eventually further exploit—the simplification that partial fractioning produces for
rational functions in amplitudes and IBP expressions.

The method uses evaluations in the 𝑝-adic numbers Q𝑝, which have been studied by mathe-
maticians for over a century and can be applied to a variety of areas of physics [33] ranging from
𝑝-adic quantum mechanics [34] to quantum field theory [35, 36] to string amplitudes [37–39] to,
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as pointed out in [21], the study of the singular limits of polynomials and rational functions, which
is helpful for studying the partial-fractioning of rational functions as desired in this work. The
reader is referred to my main article [1] and references therein for more information on the topic, an
introduction to common notation and notions such as the 𝑝-adic absolute value | · |𝑝, and a summary
of the properties of Q𝑝 that this interpolation method relies upon.

Let 𝑅 denote the rational function we wish to reconstruct and let 𝑁 be the number of variables
it contains. We start by observing, as a consequence of eq. (1), that if we can find a special 𝑝-adic
point 𝑥 at which the denominator 𝑑𝑘 of one partial-fractioned term 𝑛𝑘/𝑑𝑘 becomes 𝑝-adically
smaller than all the others, i.e. if for some 𝑥 ∈ Q𝑁

𝑝 ,

∃𝑘 : ∀𝑖 ≠ 𝑘, |𝑑𝑘 (𝑥) |𝑝 < |𝑑𝑖 (𝑥) |𝑝, (3)

then evaluating the complete rational function 𝑅 at that 𝑝-adic point 𝑥 will give a series

𝑅(𝑥) = 𝑛𝑘 (𝑥)
𝑑𝑘 (𝑥)

+ O(𝑝−𝑚+1), (4)

where 𝑚 = − log𝑝

(
|𝑑𝑘 (𝑥) |𝑝

)
.2 Eq. (4) is a consequence of eq. (1), but obviously the result of a

numerical evaluation does not depend on whether it is performed using the partial-fractioned form
of 𝑅, or its common-denominator form, or even a “black-box” program that produces numerical
evaluations of 𝑅 without knowledge of its explicit symbolic form. In general, the series (4) is
O(𝑝−𝑚) and the coefficient of 𝑝−𝑚 gives useful information about 𝑛𝑘 (𝑥). In particular, if 𝑛𝑘 = 0,
the O(𝑝−𝑚) term will vanish and so the leading term of the series 𝑅(𝑥) will be O(𝑝−𝑚+1) instead.
Furthermore, even when 𝑛𝑘 ≠ 0, we can use eq. (4) to obtain the leading 𝑝-adic digit of 𝑛𝑘 (𝑥), in
effect obtaining a finite-field evaluation of 𝑛𝑘 . By repeating for other values of 𝑥 that still satisfy
eq. (3) for the same 𝑘 , we can gather sufficient information to reconstruct the analytic form of 𝑛𝑘
modulo 𝑝. This procedure can then be repeated for other fields Q𝑝 in order to then obtain the
complete expression for 𝑛𝑘 using the Chinese remainder theorem. It is vital to perform this last
step before proceeding to probe or reconstruct other partial-fractioned terms. For a more complete
description of this procedure, the reader is referred to the main article [1].

There are many important details that are beyond the scope of this brief proceedings paper but
that are essential for the implementation of this interpolation technique. For example, the choice
of the special points 𝑥 in eqs. (3) and (4) merits elaboration: while it is straight-forward to see that
certain choices of 𝑝-adic point might pick out subsets of the partial-fractioned terms in eq. (1),
picking out a single partial-fractioned term at a time is non-trivial. The procedure by which this
can be done is explained comprehensively in my main article [1], along with other details and
explanations that have been omitted from this brief proceedings paper.

3. Results and discussion

By employing the technique presented in sec. 2, the rational function 𝑅∗ was reconstructed
in full. This was achieved using no knowledge of 𝑅∗ other than its mass dimension, its common

2In this work, log𝑝 does not denote the 𝑝-adic logarithm sometimes seen in the mathematical literature, but instead
just an ordinary logarithm with base 𝑝.
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Table 2: Comparison of original and reconstructed form of 𝑅∗. Original expression is in common-
denominator form, with numerator fully expanded and denominator fully factorised. Sizes are as reported
using ByteCount in Mathematica. Number of free parameters is obtained by counting the number of terms
in the fully-expanded numerator(s).

Expression Size Parameters to fit
Original 605 MB 1,369,559

Reconstructed 4.5 MB 52,527 (of which 15,403 non-zero)

denominator, and the results of “black-box” probes at integer-valued kinematic points. As shown in
Table 2, the reconstructed result is 130 times smaller than the common-denominator form targeted
by conventional techniques. The reconstruction required O(6 × 104) numerical (Q𝑝) evaluations
per prime, whereas the conventional (F𝑝-based) approaches would require O(1.4× 106) probes per
prime. Furthermore, the parameters in the partial-fractioned form are generally simpler than those
in common-denominator form, and so for most parameters only 3 or 4 𝑝-adic fields were required
(plus one for checks), with 𝑝 ∼ O(100).

The reconstructed result exhibits further structure which in future work it would be beneficial to
study and exploit. This is best seen and discussed with an example. We will consider the following
reconstructed terms

45
1024 𝑠

6
45𝑠

3
12

(𝐷 − 3)𝑠4
34𝑠51(−𝑠23 + 𝑠45 + 𝑠51)3

+
9

5120 𝑠
6
45𝑠

3
12

(𝐷 − 1)𝑠4
34𝑠51(−𝑠23 + 𝑠45 + 𝑠51)3

−
693

5120 𝑠
6
45𝑠

3
12

(2𝐷 − 7)𝑠4
34𝑠51(−𝑠23 + 𝑠45 + 𝑠51)3

−
3

1024 𝑠
6
45𝑠

3
12

𝑠4
34𝑠51(−𝑠23 + 𝑠45 + 𝑠51)3

+
− 45𝑠6

45𝑠
2
51

1024 − 135𝑠6
45𝑠51𝑠12

1024 − 135𝑠6
45𝑠

2
12

1024

(𝐷 − 3)𝑠4
34(𝑠23 − 𝑠45 − 𝑠51)3

+
− 9𝑠6

45𝑠
2
51

5120 − 27𝑠6
45𝑠51𝑠12
5120 − 27𝑠6

45𝑠
2
12

5120

(𝐷 − 1)𝑠4
34(𝑠23 − 𝑠45 − 𝑠51)3

+
693𝑠6

45𝑠
2
51

5120 + 2079𝑠6
45𝑠51𝑠12

5120 + 2079𝑠6
45𝑠

2
12

5120

(2𝐷 − 7)𝑠4
34(𝑠23 − 𝑠45 − 𝑠51)3

+
− 3𝑠6

45𝑠
2
51

1024 − 9𝑠6
45𝑠51𝑠12
1024 − 9𝑠6

45𝑠
2
12

1024

𝑠4
34(−𝑠23 + 𝑠45 + 𝑠51)3

, (5)

which form a small part of our full reconstructed result. Here 𝑠𝑖 𝑗 are the 5 kinematic variables of 𝑅.
Firstly, it should be mentioned that 70% of the free parameters that were fitted turned out to be

zero, as anticipated from the discussion at the end of sec. 1. This is can be seen in expression (5)
in the following way. Expression (5) contains 16 numerator terms and therefore accounts for 16 of
the 15,403 non-zero free parameters mentioned in Table 2. Considering the first term in (5), we
note that a priori there was no reason for the numerator to only contain a term ∼ 𝑠6

45𝑠
3
12; it could

equally well have contained other mass-squared-dimension-9 combinations of 𝑠45 and 𝑠12, such as
𝑠2

45𝑠
7
12. To obtain (5) a total of 220 free parameters were therefore fitted, of which 204 turned out to

be zero. Expression (5) thus accounts for 220 of the 52,527 free parameters mentioned in Table 2.
Identifying the vanishing parameters in advance would reduce the number of parameters to be fitted
from 52,527 to 15,403, and reduce the number of probes correspondingly.

Secondly, some of the numerators in our reconstructed result are linearly related to each other
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by a simple integer multiple. Looking at the 2 numerators on the 3rd line of expression (5)

𝑛1 = −
45𝑠6

45𝑠
2
51

1024
−

135𝑠6
45𝑠51𝑠12

1024
−

135𝑠6
45𝑠

2
12

1024
, (6)

𝑛2 = −
9𝑠6

45𝑠
2
51

5120
−

27𝑠6
45𝑠51𝑠12

5120
−

27𝑠6
45𝑠

2
12

5120
, (7)

it can be noticed that 𝑛1 = 25𝑛2. If such relations can economically be discovered prior to
reconstruction, it would further reduce the number of free parameters to be fitted and thus the
number of probes required.

Thirdly, it was noticed that in some cases it is possible to combine several of our reconstructed
terms and obtain a simpler expression. For example, if we combine together all the terms in
expression (5), we obtain the following simple term:

−
3

512𝐷
(
𝐷2 − 4

)
𝑠6

45(𝑠51 + 𝑠12)3

(𝐷 − 3) (𝐷 − 1) (2𝐷 − 7)𝑠4
34𝑠51(−𝑠23 + 𝑠45 + 𝑠51)3

. (8)

Note however that the first two properties do not necessarily imply the third, and it was observed
from examining other reconstructed terms that combining them in this manner does not always
simplify them. The results in Table 2 do not employ any such recombination of terms, and further
study is required to understand which cases are amenable to such simplification and to devise a
manner to exploit it during the reconstruction itself, rather than afterwards. This is an interesting
direction for exploration, with the potential to yield a further order-of-magnitude reduction in the
number of free parameters to be fitted, the number of probes required per prime field, and the size
of the final result. Additionally, since the numerical coefficient 3

512 in (8) is somewhat simpler than
coefficients like 2079

5020 in (5), fewer prime fields would be required to fit this coefficient.
It is worthwhile to note that although the patterns and structure exploited in this work—as

well as those left for future work—could be studied post-hoc by partial-fractioning an expression
obtained by conventional means, this work’s technique of reconstructing one partial-fractioned term
at a time provides the capability to study and exploit these structures during the reconstruction. For
cutting-edge calculations where obtaining any analytic expression in the first place is the principal
challenge and goal, this new capability can be a valuable asset.

Going further, emphasis should be placed on the desirability of analytically studying the
simplifications explored in this work, possibly in conjunction with the observations in Refs. [14,
21, 24]. It is hoped that the techniques presented in this work will prove to be useful tools in this
regard, with benefits for our theoretical understanding as well as the speed of calculations.

4. Conclusion and outlook

In this proceedings paper, based on my article [1], a new interpolation technique was presented
to reconstruct rational functions directly in partial-fractioned form. It uses 𝑝-adic evaluations to
harness the major simplification of rational functions under partial fractioning. It was shown that
this simplification does not occur for more generic rational functions, and so it instead appears to
be a specific feature of the rational functions appearing in loop calculations.

7
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The interpolation technique was demonstrated using the example of 𝑅∗, the largest rational
function in one of the largest IBP coefficients needed for any 2-loop 5-point massless non-planar
QCD amplitude. It was found that the technique can reconstruct such functions using 25 times
fewer numerical (Q𝑝) probes than conventional techniques based on finite-field probes, and yields
a 100-fold simplification in the size of the reconstructed result.

Having demonstrated this technique on the large rational functions appearing in massless 2-loop
5-point QCD calculations, the natural next step would be to apply it to 2-loop 5-point processes with
masses, most of which currently remain unknown. Preliminary work indicates that the technique
generalises straight-forwardly to such processes. More generally, experience shows that partial-
fractioning produces simplifications in amplitudes whenever several kinematic scales are present,
and so the technique is expected to be applicable to a wide range of higher-point or higher-loop
amplitudes.

A number of technical improvements could be implemented to further extend the improvements
obtained with this method. For example, one could recycle the probes used during reconstruction,
which we expect will give a significant further reduction in the overall number of probes required.
In addition, since this work focussed on reducing the number of probes while remaining agnostic
as to the choice of computational implementation of 𝑝-adic numbers, it would be useful in future
work to explore various implementation strategies and compare their costs relative to each other and
relative to conventional F𝑝 probes. At present it would be prudent to assume 𝑝-adic probes to be
slower than F𝑝 probes, but it should also be highlighted that using small-valued primes 𝑝 ∼ O(100),
as in this work, is likely to be beneficial, especially for filtering out partial-fractioned terms that
vanish, regardless of the way in which one implements 𝑝-adic numbers on a computer.

Finally, it was observed that the reconstructed result for 𝑅∗ displays further patterns and
structures which would be worthwhile to study, understand, and exploit in future work. These
observations provide hints of the potential to obtain even further improvements in the speed and reach
of this calculational method, as well as potential avenues for starting to seek further understanding
of the physical origin of these simplifications and of the structure of the rational functions appearing
in scattering amplitudes and IBPs.
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