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1. Introduction

Obtaining very precise predictions for processes in the Standard Model is essential for the
success of the future LHC program. In the forthcoming High-Luminosity phase (HL-LHC), the
expected increased luminosity of about 3 𝑎𝑏−1 for 𝑝𝑝 collisions will drastically decrease statistical
uncertainties. The production of an electroweak vector boson (V) and a hadronic jet constitutes
a precise probe of Quantum Chromodynamics (QCD), the theory that plays a fundamental role
in hadronic collisions. Moreover, it is among the most precisely measured processes at LHC. In
the case 𝑉 = 𝑍, 𝛾∗, whose leptonic decay can be easily detected, experimental uncertainties for
transverse momentum distributions are already below the percent level [1–5]. More differential
observables, such as angular distributions of decay products, are also measured to a very high
accuracy [6–8]. These allow for detailed studies of polarisation states of the vector boson, and its
production mechanism. Given the astonishing precision of the experimental measurements, N3LO
predictions become necessary to perform phenomenological studies at high accuracy.
It is also hard to overestimate the importance of Higgs boson and jet production at the LHC. The
Higgs boson has been at the center of both experimental and theoretical efforts since its discovery.
By studying its properties, we aim to improve our understanding of electroweak symmetry breaking,
the mechanism through which fermions and electroweak gauge bosons acquire mass. It is known
that the Higgs cross-section receives large contributions from higher-order corrections [9, 10].
Therefore, N3LO corrections are needed to reach the O(1%) level of accuracy [11].
In this context, scattering amplitudes are the bridge between the Standard Model and collider
phenomenology. Their perturbative expansion requires the calculation of multiloops corrections.
The amplitudes for vector boson plus jet production have been obtained up to two loops [12, 13],
following the computation of the relevant master integrals [14, 15]. The same loop order is known
for Higgs boson and jet production [16], in the heavy top quark mass limit, 𝑚𝑇 → ∞ [17–19].
Particular theoretical interest is reserved to the system formed by a Higgs and three gluons. The
connection between the amplitude for this process and a three point Form Factor (FF) in 𝑁 = 4
Super Yang-Mills (SYM) has been conjectured in [20, 21]. We are interested in investigating this
at the three loop order.
In these proceedings, I will present progress towards the extension of these results to the three
loop order and first results in the vector boson case. This requires the computation of the relevant
three loop master integrals, including both planar and non-planar topologies. At this loop order,
non-planar integrals bring a higher level of analytic complexity through the introduction of new
letters in differential equation systems. Finally, we will stress how the reduction to a basis of master
integrals poses a substantial computational challenge.

2. Computing an amplitude

We consider the decay of a particle with mass 𝑀2 to three massless QCD partons, where the
massive particle can be a Higgs boson or a vector boson. The production process is related to the
decay through analytic continuation. We will generically indicate amplitudes with letter M. We
work in massless QCD with 𝑁 𝑓 = 5, where the top quark has been integrated out. In this theory,
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the Higgs couples to gluons through the effective interaction

L𝑖𝑛𝑡 = − 𝜆

4
𝐻𝐺

𝜇𝜈
𝑎 𝐺𝑎,𝜇𝜈 , (1)

where 𝐺𝜇𝜈
𝑎 is the field strength tensor of the gluons and 𝐻 is the Higgs field,. We are also interested

in the three point Form Factor (FF) in 𝑁 = 4 SYM,

𝑭O2 (1, 2, 3, 𝑞) =
∫

𝑑𝐷𝑥 𝑒−𝚤𝑞 ·𝑥 ⟨Φ1Φ2Φ3 |O2(𝑥) |0⟩ , (2)

where O2 = tr
(
𝜙2) is a Half-BPS operator of the theory, and Φ𝑖 are three on-shell states. As we

will explain later, the FF is closely related to the QCD amplitude for a system formed by a Higgs
boson and three gluons.

2.1 Kinematics

We call the momenta of the three massless partons 𝑝1, 𝑝2, 𝑝3, while 𝑝4 is the momentum of
the massive state. Mandelstam invariants are defined as

𝑠12 = (𝑝1 + 𝑝2)2 , 𝑠13 = (𝑝1 + 𝑝3)2 , 𝑠23 = (𝑝2 + 𝑝3)2, (3)

with all states outgoing. It is more convenient to work with the dimensionless ratios

𝑥 =
𝑠12

𝑀2 , 𝑦 =
𝑠13

𝑀2 , 𝑧 =
𝑠23

𝑀2 . (4)

Momentum conservation implies
𝑥 + 𝑦 + 𝑧 = 1. (5)

In the decay kinematic region, invariants are non-negative. This, together with (4), defines the
kinematic region

𝑥 ≥ 0, 0 ≤ 𝑥 ≤ 1 − 𝑦, 𝑧 = 1 − 𝑦 − 𝑥. (6)

2.2 Tensor decomposition

We decompose the QCD amplitudes in the most general basis of tensor structures compatible
with external states and Lorentz invariance. We write

M =

𝑁∑︁
𝑖=1

F𝑖 𝑇𝑖 , (7)

where the 𝑁 tensors {𝑇𝑖} contain all the dependence on external polarization states and the coeffi-
cients {𝐹𝑖}, called form factors, are scalar functions of the Mandelstam invariants. Importantly, we
work in ’t Hooft-Veltman scheme and consider external states as four dimensional objects [22]. The
polarization vector 𝜖 of an external gluon with momentum 𝑝 satisfies the transversality conditions
𝑝 · 𝜖 = 0. Using this and the choice of an axial gauge we can restrict the basis of tensor structures
considerably. We then proceed defining a set of projectors {P𝑖} to extract the form factor. We
assume

P𝑖 =

𝑁∑︁
𝑗=1

𝑐
( 𝑗 )
𝑖

𝑇
†
𝑗
, (8)
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and fix the coefficients 𝑐 ( 𝑗 )
𝑖

requiring that

P𝑖 · M
!
= F𝑖 , (9)

where the operation of the projection implies a sum over polarization states. Since the helicity
amplitudes are linear combinations of the scalar form factors 𝐹𝑖 , we can construct new projector
operators, as linear combinations of the projectors 𝑃𝑖 , that allow us to directly extract the helicity
amplitudes for each helicity configuration [23]. We refer to [24, 25] for the explicit tensor de-
composition and helicity amplitudes projectors for all processes we are interested in: 𝑉 → 𝑞𝑞𝑔,
𝑉 → 𝑔𝑔𝑔, 𝐻 → 𝑞𝑞𝑔, 𝐻 → 𝑔𝑔𝑔.

2.3 Computational setup

For what concerns the QCD amplitudes, at a fixed loop order, we generate all relevant Feynman
diagrams using QGRAF [26]. We insert Feynman rules and perform projection onto helicity
amplitudes in FORM [27]. Each projected contribution is written as a linear combination of
Feynman Integrals with coefficients that are rational functions of the invariants and of the space-
time dimension 𝐷. On the other side, the integrand for the FF in Eq (2) has been determined by
using generalized unitarity methods to constrain an ansatz satisfying relations from color-kinematic
duality [28]. As for the QCD amplitudes, also in this case one can decompose the integrand as a
linear combination of Feynman integrals which we map to auxiliary topologies using REDUZE [29].
Feynman integrals can be generally written as

𝐼 =

∫ ( 𝐿∏
𝑙=1

(−𝑀2
𝐻)−𝜖 𝑒𝛾𝐸 𝜖 d𝐷𝑘𝑙

𝑖𝜋𝑑/2

) 𝑁𝑝∏
𝑖=1

𝐷
−𝑎𝑖
𝑖

, (10)

where 𝑘𝑙 are the 𝐿 loop momenta, 𝐷𝑖 the propagators raised to integer powers 𝑎𝑖 , 𝑁𝑝 is the number
of such propagators, and 𝛾𝐸 = 0.577 . . . the Euler-Mascheroni constant. The topology of each
scalar integral is uniquely identified by the propagators which appear in the denominator. The scalar
integrals defined in (10) satisfy integration-by-parts (IBP) identities [30, 31]. Therefore, we can
express them in terms of a smaller set of master integrals.

To evaluate the master integrals, we use the method of differential equations [32–35]. We build
a so called canonical basis [36] for the master integrals, in which the dependence on the dimensional
regulator 𝜖 = 4−𝐷

2 is factorized form kinematics in the differential equation.

3. The Leading Color (LC) amplitude for 𝑉𝑞𝑞𝑔

Following the procedure outlined in the previous section, we computed the three loop helicity
amplitudes for the decay of a vector boson into a quark-antiquark pair and a gluon in the leading color
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Figure 1: 8 propagator topology whose symbol solution violates the non-adjacency conjecture.

approximation, [37]. In fact, the three loop amplitude M (3) admits the following decomposition

M (3) = 𝑁3 Ω
(3)
1 + 𝑁Ω

(3)
2 + 1

𝑁
Ω

(3)
3 + 1

𝑁3Ω
(3)
4

+ 𝑁 𝑓 𝑁
2Ω

(3)
5 + 𝑁 𝑓Ω

(3)
6 +

𝑁 𝑓

𝑁2 Ω
(3)
7

+ 𝑁2
𝑓 𝑁 Ω

(3)
8 +

𝑁2
𝑓

𝑁
Ω

(3)
9 + 𝑁3

𝑓Ω
(3)
10

+ 𝑁 𝑓 ,𝑉𝑁
2Ω

(3)
11 + 𝑁 𝑓 ,𝑉Ω

(3)
12

+
𝑁 𝑓 ,𝑉

𝑁2 Ω
(3)
13 + 𝑁 𝑓 𝑁 𝑓 ,𝑉𝑁Ω

(3)
14 +

𝑁 𝑓 𝑁 𝑓 ,𝑉

𝑁
Ω

(3)
15 , (11)

where 𝑁 is the number of colors, 𝑁 𝑓 is the number of flavors and 𝑁 𝑓 ,𝑉 refers to the contribution
where the vector boson couples to an internal fermion loop. We assume 𝑁 and 𝑁 𝑓 of the same
size and compute only the leading terms of the expansion: 𝑁3, 𝑁2𝑁 𝑓 , 𝑁2

𝑓
𝑁 , 𝑁3

𝑓
. Importantly,

the leading color for 𝑉+jet receives contribution only from planar integrals. Planar topologies
were investigated in [38, 39], where a solution was given up to order 𝜖6 in terms of multiple
polylogarithms (MPLs) [14, 40–42] with alphabet

®𝛼 = {𝑥, 𝑦, 1 − 𝑥, 1 − 𝑦, 𝑥 + 𝑦, 1 − 𝑥 − 𝑦}. (12)

This is the same alphabet which appears in the corresponding 2-loop calculation, and we refer to it
as the 2-loop alphabet. We used KIRA2 [43, 44] to perform IBP reduction of integrals up to rank
5. This was computationally expensive, with very high memory usage of the order of 1 TB.
We verified that the symbol1 of the leading color 𝑉𝑔𝑞𝑞 amplitude satisfies the conjectured non-
adjacency conditions [46, 47], even though integrals whose symbol is not satisfying the conjecture
were found in one of the so-called tennis-court topology [48]. In particular, a single subsector with
8 propagators is identified as the source of this violation. This integral is drawn in Figure 1.
We have performed analytic continuation of all helicity amplitudes to all production regions:
𝑞𝑞 → 𝑉𝑔, 𝑔𝑞 → 𝑉𝑞, 𝑔𝑞 → 𝑉𝑞.

1See for example [45] for an introduction to the symbol concept with an application to the 𝐻 → 𝑔𝑔𝑔 at 2-loop.
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4. Towards the 𝐻 → 𝑔𝑔𝑔 amplitude and the 𝑁 = 4 Form Factor at 3 loop in leading
color approximation

The amplitude for the process 𝐻 → 𝑔𝑔𝑔 with QCD corrections and the FF in 𝑁 = 4 SYM
defined in Eq (2) are closely related. It has been verified up to 2 loop that some of the properties of
the FF are in fact inherited by the QCD counterpart, see 4.3. Besides planar topologies, the leading
color amplitude for Higgs and three gluons and the FF receive contributions also from non-planar
topologies. The five irreducible non-planar top sectors that contribute are drawn in Figure 2. The
two main tasks we must face are

• Find a canonical basis for all the top sectors and provide a solution for the integrals.

• Perform IBP reduction to master integrals.

4.1 Finding canonical basis

As anticipated in Section 2, we use the differential equation method to compute master integrals.
In general, for a master integral basis ®𝐼, the differential equation system will be written in the form

𝑑 ®𝐼 = 𝐴(𝑠𝑖 𝑗 , 𝜖) · ®𝐼 . (13)

It was shown in [36] that transformations 𝑇 to a new basis ®𝐽 = 𝑇 · ®𝐼 can be found such that the
differential equation in the new basis system assumes the particular form

𝑑 ®𝐽 = 𝜖 �̃�(𝑠𝑖 𝑗) · ®𝐽, (14)

where the 𝜖 dependence factorises. Moreover, the connection matrix �̃� has entries that are 𝑑 log
forms. We write,

�̃�(𝑠𝑖 𝑗) =
𝑁𝐿∑︁
𝑖=1

𝐴𝑖 𝑑 log𝛼𝑖 , (15)

where the {𝐴𝑖} are matrices of rational numbers, the {𝛼𝑖}, called letters, are algebraic functions of
the invariants and 𝑁𝐿 is the number of letters.

The first topology in Figure 2 was already addressed in [48]. A canonical basis was found
and a solution was given for all the integrals in terms of MPLs. The alphabet for this topology
is bigger than for the planar case. In particular, 2 quadratic letters appear on top of the linear
2-loop alphabet of Eq (12). We are interested in finding the canonical basis for all the remaining
topologies in Figure 2. Working at the differential equation level and looking for a transformation
matrix 𝑇 that realizes the 𝜖-factorised form is, in general, a very hard task. Better approaches
aim at finding canonical candidates before the differential equation construction. A number of
techniques have been developed to address this problem: most of them are based on the conjectural
property of canonical candidates that they can be written at the integrand level in 𝑑 log form
with constant leading singularity [49]. Finding such candidates is most easily done working in
Baikov representation and, in particular, in the simplified loop-by-loop construction [50]. In Baikov
representation, a Feynman integral 𝐹 whose graph has 𝑚 propagators has the following schematic
form,

𝐹 ∝
∫
C

𝑑𝑧1 · · · 𝑑𝑧𝑛
𝑧𝑡1 · · · 𝑧𝑡𝑚

𝑃
𝐷−𝐿−𝐸−1

2 , (16)
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k13

k23
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Figure 2: Irreducible non planar top sectors contributing to the leading color of 𝐻 → 𝑔𝑔𝑔 and the tr(𝜙2)
Form Factor.

where 𝑛 is the total number of propagators in the auxiliary topology, 𝐿 is the number of loops, 𝐸
is the number of independent external momenta and 𝑃 = 𝑃({𝑠𝑖 𝑗}, {𝑧𝑖}) is the Baikov polynomial.
The Baikov polynomial is defined as the Gram determinant of all the external and loop momenta.
A candidate 𝐶 is built by multiplying the integrand with a polynomial ansatz 𝑁 ,

𝐶 ∝
∫
C

𝑑𝑧1 · · · 𝑑𝑧𝑛
𝑧𝑡1 · · · 𝑧𝑡𝑚

𝑃
𝐷−𝐿−𝐸−1

2 𝑁 ({𝑐 𝑗}). (17)

Numerators are of the general form,

𝑁 ({𝑐 𝑗}) =
∑︁
𝑗

𝑐 𝑗

∏
𝑘∈𝑆 𝑗

𝑧𝑘 , (18)

where the set 𝑆 𝑗 is a set of propagator indices and we leave the sum over 𝑗 unspecified, to stress that
the dimensions of the ansatz cannot be determined in advance. One should fix the coefficients {𝑐 𝑗}
in such a way that the aforementioned 𝑑 log form is obtained. The analysis is usually performed
on various propagator cuts, rather than on the full integrand. Baikov representation turns out to be
particularly suited for the job, given that the cut operation is obtained by taking the corresponding
residues in the integration variables. Summarizing our strategy, we built all canonical basis
employing the following techniques:
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• We used the automated package DLogBasis [51] for sectors with a low number of propa-
gators. Moreover, simple integrals like bubbles with doubled propagators are known to be
canonical, [52]. We used this information when possible.

• For higher sectors, and in particular for top sectors, we performed a leading singularity
analysis on the cuts.

• In one case, a close-to-canonical form of the differential equation was achieved. A final basis
rotation was performed at the level of the differential equation matrix.

From the canonical differential equations, we can read off the alphabet

®𝛼 =
{
𝛼1, . . . , 𝛼20

}
={

𝑥, 𝑦, 1 − 𝑥 − 𝑦, 1 − 𝑥, 1 − 𝑦, 𝑥 + 𝑦,
(1 − 𝑥 − 𝑦)𝑥 −

√︁
−𝑥(1 − 𝑥 − 𝑦)𝑦

(1 − 𝑥 − 𝑦)𝑥 +
√︁
−𝑥(1 − 𝑥 − 𝑦)𝑦

,

𝑥𝑦 −
√︁
−𝑥(1 − 𝑥 − 𝑦)𝑦

𝑥𝑦 +
√︁
−𝑥(1 − 𝑥 − 𝑦)𝑦

, 1 − 𝑦 (1 + 𝑥) , 1 − 𝑥 (1 + 𝑦) , 𝑦2 + 𝑥 − 𝑦,

𝑥2 + 𝑦 − 𝑥,−𝑦 + (1 − 𝑥)2 , (𝑥 + 𝑦)2 − 𝑦, (𝑥 + 𝑦)2 − 𝑥, (𝑦 − 1)2 − 𝑥,

𝑦2 + 𝑥𝑦 + 𝑥, 𝑥2 + 𝑥𝑦 + 𝑦, (𝑦 − 1)2 + 𝑥𝑦, (𝑥 − 1)2 + 𝑥𝑦
}
, (19)

where the variables are defined as in (4). The alphabet consists of 20 letters: 2 of them are associated
with a square root, 12 are quadratic letters and the rest is the 2 loop alphabet. We stress that although
rationalization of the square root is possible, it turns out to be difficult to rationalize the root while
keeping the rest of the alphabet at most quadratic.

4.2 Boundary conditions and symbol solution

We write the solution of the differential equation as an expansion in 𝜖

®𝐽 (𝑥, 𝑦) =
∑︁
𝑛

𝜖𝑛 ®𝐽 (𝑛) (𝑥, 𝑦), (20)

which is obtained in terms of iterated integrals, via Eq. (14). We normalize the basis such that
the expansion starts at order 𝜖0, which is easily verified as being constant, ®𝐽 (0) (𝑥, 𝑦) = ®𝐽 (0) . The
solution at order 𝜖𝑛, ®𝐽 (𝑛) , is called the weight-n part of the solution.
It is possible to fix the boundary conditions using information from the analytic properties of
Feynman integrals. The only physical thresholds in our problem are identified by the letters
{𝛼1, 𝛼2, 𝛼3}. The singular behavior close to a threshold can be predicted from the differential
equation. For example, suppose we are interested in studying the behavior of the solution for
𝑥 → 0. The differential equation simplifies to the form

𝜕 ®𝐽
𝜕𝑥

∼ 𝜖

𝑥
𝐴𝑥

®𝐽, (21)

and a solution is obtained by exponentiation of the numerical matrix 𝐴𝑥

®𝐽 (𝑥 → 0, 𝑦) = 𝑥 𝜖 𝐴𝑥 ®𝐽0(𝑦), (22)
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with 𝐽0 a vector of function of the other variable 𝑦 only (and 𝜖). The matrix exponential will
contain terms of the form 𝑥𝑎𝜖 , with 𝑎 positive or negative. It was argued in [51] that positive 𝑎

are associated with logarithmic divergences of UV type, which cannot appear since our basis is
UV finite. Requiring the absence of such divergences and imposing regularity of the solution on
the rest of the alphabet, {𝛼4, · · · , 𝛼20}, which is not associated to any physical singular behaviour,
we can determine boundary constants for all master integrals in a full analytic manner, given the
knowledge of single-scale integrals only.
The constant weight-0 solution, O(𝜖0), is fully determined by the boundary constants at that order.
With the weight zero solution at hand, we determined the symbol level solution, which contains
the information about the function appearing at different weights, while retaining only the weight-0
boundary constants. By inspecting the symbol solution, we know that quadratic letters and square
root letters start contributing from O(𝜖4).

4.3 𝑁 = 4 Form Factor at symbol level

We consider now the three point Form Factor in Eq (2). The symbol level solution for it has
been recently bootstrapped up to eight loops [53]. The result has the following properties:

• It is of uniform transcendental weight;

• The finite remainder is of maximum transcendental weight;

• Only the 2 loop letters {𝛼1, . . . , 𝛼6} contribute up to eight loops.

As a strong check of the calculation, we reproduced the 3 loop symbol level result of [53] by
performing IBP reduction of the integrand to our canonical basis and inserting the symbol solutions
for the master integrals. For the FF, we required the reduction of integrals up to rank 2. This
is considerably easier than the QCD counterpart, where a reduction of non-planar integrals up to
rank 6 is needed. At present, such a reduction to master integrals is not available. It has been
conjectured, and verified up to two loops, that the highest transcendental part of the 𝐻 → 𝑔𝑔𝑔

amplitude is captured entirely by the FF. If this conjecture is verified also at three loop, it implies
that only the 2-loop alphabet contributes to the highest transcendental part of the amplitude. This
would indicate that the finite remainder for this amplitude might be simpler than expected, at least
from the point of view of the functional basis in which it can be written.

5. Conclusion

In this contribution, I described the computation of the leading color𝑉+jet amplitude in the 𝑞𝑞
channel at the three-loop order. I also described recent progress toward the calculation of the leading
color three loop 𝐻+jet amplitude and Form Factor in 𝑁 = 4 SYM. I focused on the procedure to
build a canonical basis for all the required master integrals and I showed how the knowledge of
analytic properties of Feynman integrals can be used to fix the boundary constants. A full solution
for the master integrals and IBP reduction for the 𝐻+jet amplitude remain the two outstanding tasks
to be addressed in the future.
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