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Two-loop amplitude computation with HELAC

1. Introduction

The upcoming High Luminosity upgrade of the LHC will provide us with experimental data of
unprecedented precision. Making sense of these data and exploiting the machine’s full potential will
require theoretical predictions of equally high precision. In recent years, the theoretical community
has made substantial effort to meet the challenge of performing notoriously difficult perturbative
calculations in Quantum Field Theory. The current precision frontier for the QCD dominated
processes studied at the LHC lies at Next-to-Next-to-Leading-Order (NNLO) for 2→ 3 scattering
processes [1, 2].

A typical NNLO calculation involves the computation of two-loop amplitudes (VV), the one-
(RV) and two-particle (RR) unresolved contributions,

σNNLO =

∫
m

dΦm

(
2Re(M (0)∗m M (2)m ) +

���M (1)m

���2) Jm(Φ) VV

+

∫
m+1

dΦm+1

(
2Re

(
M (0)∗

m+1M (1)
m+1

))
Jm+1(Φ) RV

+

∫
m+2

dΦm+2

���M (0)m+2

���2 Jm+2(Φ) RR

where M (0)m , M (1)m and M (2)m are the m−particle tree-order, one-loop and two-loop amplitudes and
Jm(Φ) denote appropriate jet functions. The calculation of real-virtual RV and real-real RR
contributions is well developed and automated, based mainly on subtraction schemes [3–8]. The
computation of two-loop amplitudes constitutes the main bottleneck of the NNLO calculations.

The key aspects of a two-loop amplitude computation can be summarized as follows:

1. construction of two-loop integrands. This can be achieved either by computing individual
Feynman diagrams or by using recursion relations (see e.g. Refs. [9–13];

2. reduction of two-loop amplitudes in terms of Master Integrals [14–32]. This can be achieved
at the integrand or at the integral level;

3. calculation of Master Integrals [33–50] based on analytical or (semi-)numerical methods.

Each of these steps comes with its own challenges, and the developments during the last years
have yielded a number of results for 2→ 3 cross sections at NNLO accuracy [51–56].

In this contribution, we present the steps towards the construction of Helac-2loop, a framework
for automated two-loop calculations. We focus in particular on items 1 and 2 in the list above. In
Section 2 we illustrate the basic details of the algorithm for the computation of two-loop integrand
functions. In Section 3 we sketch the approach for the reduction of two-loop amplitudes that we
plan to implement in our framework. Finally in Section 4 we discuss the d = 4 − 2ε reconstruction
of loop amplitudes.

2. Construction of two-loop integrands

The construction of two-loop integrands is described in Ref. [57]. For completeness we
briefly present the main steps of the algorithm. The first step towards the construction of two-loop

2



P
o
S
(
L
L
2
0
2
4
)
0
5
1

Two-loop amplitude computation with HELAC

integrands consists in the generation of loop topologies. A key observation is that all two-loop
topologies describing arbitrary processes in the Standard Model1 (SM) fall into one of the three
master categories, that we name "Theta", "Infinity" and "Dumbbell" for brevity. The topologies
generated at this stage carry no information about the flavor and color of the propagators in the
loop. This information is provided in the next step, which we refer under the name of color-flavor
dressing (schematically illustrated in Figure 1 in the context of a simple example). In the last step,
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Figure 1: Schematic illustration of color-flavor dressing for a simple two-loop topology.

a set of recursion relations is constructed for each two-loop topology. These relations encode the
instructions to compute recursively the numerators that will be used by Helac during numerical
evaluations. They can be generated once and stored in a file named skeleton. An example of a
two-loop numerator stored in the skeleton is provided in Fig. 4 of reference [57].

In Table 1 the data regarding the skeleton for several two-loop processes is presented. We also
include one-loop results for comparison.

3. Reduction of two-loop amplitudes at integrand level

Let us consider a two-loop contribution, generated according to the algorithm described in
Section 2 and characterised by NP loop propagators for a generic process with n external particles.
Let {D1, . . . ,DNP } be the denominators of the loop propagators (wewill refer to themas propagators
in the following for brevity), {p1, . . . , pn} the four-dimensional momenta of the external particles

1More generally, this statement is true for any model whose Feynman rules include up to four-particle vertices
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Two-loop amplitude computation with HELAC

gray Process # Loop-Flavors Color Size Time Nums
gg → gg 2 {g, c, c̄} Lead. 8.9 MB 15.017s 4560
gg → gg 2 {g, q, q̄, c, c̄} Full 110.6 MB 6m 54.574s 89392
gg → qq̄ 2 {g, q, q̄, c, c̄} Full 16.1 MB 3m 14.509s 13856
gg → ggg 2 {g, c, c̄} Lead. 300.0 MB 21m 42.609s 81480
gg → qq̄g 2 {g, q, q̄, c, c̄} Full 686.1 MB 400m 31.591s 318964
gg → gg 1 {g, q, q̄, c, c̄} Full 537.8 kB 2.386s 768
gg → ggg 1 {g, q, q̄, c, c̄} Full 15.1 MB 8m 53.349s 11496
gg → gggg 1 {g, c, c̄} Lead. 394.0 MB 104m 14.95s 19680

Table 1: Table containing information about the skeleton of some QCD processes at one- and two-loops.
Therein, the column # refers to the number of loops, Loop-Flavors denotes the flavor of the particles included
in the loops, and Color indicates the color order, with Lead. and Full referring to leading- and full-color
approximation, respectively. The columns Size and Time, indicate the size of the skeleton and the real-
time consumed for its construction, respectively. The last column (Nums) reports the number of separate
contributions (numerators) to the amplitude.

and {k1, k2} the loop momenta. The latter, expressed in d = 4 − 2ε space-time dimensions, are
decomposed as ki = k̄i + k∗i where k̄i is the four-dimensional and k∗i the extra-dimensional part.
The scalar product reads ki · k j = k̄i · k̄ j + µi j (i, j = 1, 2), where we have defined µi j = k∗i · k

∗
j .

The integrand is understood to be a rational function of the form

R =
N

D
≡

∑
a ca(®s, ε)

(
z(a)1

)β1
· · ·

(
z(a)na

)βna
D1 · · ·DNP

, (1)

where the β’s are integers, ®s denotes generically scalar products of the form pi · pj and z(a) ∈ S =
{ki · k j, ki · pj, ki · ηj}. The ηj are transverse vectors defined such that ηi · pj = 0. Following
Eq.(1), the scalars z(a) that can be decomposed as linear combinations of propagators Di cancel
with the denominator. Then, the integrand can be recast in the form

R =

NP∑
m=0

∑
σ

∑
j c̃(σ)j (®s, ε)

∏n
(m)
T+ISP

k=1

(
z̄(σ)
k

)α( j)
k

Dσ1 · · ·Dσm

(2)

where the α’s are integers and σ denotes any possible subset of {1, . . . , NP} consisting of m
elements. The residual scalar products appearing in the numerator (that we label as z̄(j)

k
for clarity)

are either transverse scalar products (T) of the kind ki · ηj or irreducible scalar products (ISP)
which cannot be decomposed in terms of linear combinations of Di.

Based on Eq.(2), one can express the numerator function N using the following equation:

N =

NP∑
m=0

∑
σ

∑
j

c̃(σ)j (®s, ε)
n
(m)
T+ISP∏
k=1

(
z̄(σ)
k

)α( j)
k

∏
i<σ

Di . (3)

or in a more schematic but compact notation,

N = Pmax−cut +
∑
i

Pnext−to−max−cut Di +
∑
i j

Pnext−to−next−to−max−cut DiD j + · · · . (4)
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Two-loop amplitude computation with HELAC

All the P’s are understood to be polynomials in the irreducible and transverse scalar products
mentioned above.

Eqs.(3)-(4) allow us to easily sketch the necessary steps in order to complete a reduction for a
given numerator:

• Identify the maximal set of loop propagators that can be set to zero (maximal cut) and find a
set of solutions for k1, k2 which put all propagators simultaneously on shell;

• Write the equations for the coefficients M · ®c = ®N where M is a matrix of all monomials ap-
pearing in Eq.(3), evaluated on different values of cut-solutions, ®c is the vector of coefficients
to be determined and ®N is a vector of equal length with values of the numerator evaluated on
these cut-solutions;

• Solve the system of equations, ®c = M−1 · ®N , for the set of coefficients ®c and determine the
polynomial Pmax−cut;

• Subtract Pmax−cut from N and repeat the procedure iteratively to find Pnext−to−max−cut and so
on;

• Once all the polynomials have been determined, verify that the right-hand side of Eq.(4)
matches numerically with the input numerator for arbitrary values of loop momenta. This is
the so-called N = N test. At this point the reduction is complete.

Let us note that this is an entirely algebraic procedure that holds for any loop order. At the end of
the reduction, the two-loop amplitude is expressed as

A =
∑
i

CiFi (5)

where Ci are coefficients which only depend on the external momenta and wave functions and Fi

are Feynman integrals of the form

Fi ≡ Fa1...aN =

∫
ddk

ISP︷                        ︸︸                        ︷
(Dm+1)

am+1 · · · (DN )
aN

(D1)
a1 · · · (Dm)

am︸                 ︷︷                 ︸
RSP

(6)

The latter will be decomposed in terms of Master Integrals using IBP tables and then evaluated to
obtain fully numerical results for all terms in the ε−expansion of the amplitude.

It is illuminating to consider the steps sketched above for a specific gg → gg numerator
example, corresponding to the double-box topology.

In d = 4 − 2ε dimensions, there are 11 degrees of freedom: 8 from the 4-dimensional
components of the loop momenta k1, k2, and 3 from the ε-dimensional contributions of k2

1 , k2
2 and

k1 ·k2, respectively µ11, µ22 and µ12. In the case of the maximal cut, imposing the on-shell condition
sets 7 cut equations, hence we are left with 4 free parameters, and the right-hand side of Eq.(4)
consists of 70 monomials, i.e. there are 70 coefficients to be fitted. Using these 4 free parameters
we can construct a full-rank matrix M and solve the system. We have completed a Mathematica
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Two-loop amplitude computation with HELAC

simulation of this fit, for all (sub-)topologies of the two-loop gg → gg amplitude and get agreement
with the known results from Caravel [16].

In d = 4 dimensions, we begin with 8 degrees of freedom which we can use to construct
solutions to the cut equations, therefore after imposing the on-shell condition only 1 parameter is
left to build solutions with. Cut-solution sets with 1 free parameter cannot generate a matrix of rank
70. In d = 4 dimensions however, we can use Gram determinant relations to reduce the number of
monomials and the number of the corresponding coefficients that we need to fit. Indeed after taking
into account the Gram determinant relations we find that the matrix is again full-rank and this allows
the determination of all 28 indepedent coefficients for the example of the 2→ 2 double-box [58].

To avoid the complication of including the Gram determinant relations, we can adopt a hybrid
scheme, as in the one-loop OPP reduction [59], where the on-shell solutions are parametrized by
the 11 degrees of freedom, as a result of solving the on-shell equations for the propagators by
including appropriate mass terms proportional to µ11, µ22, µ12, as in d = 4−2ε , and perform the fit,
reconstructing the residues in Eq. (3), in d = 4 dimensions. A detailed description of the algorithm
will be given in a forthcoming publication.

4. Numerical reconstruction of the amplitude in d = 4 − 2ε

A solution of the reduction problem in d = 4 dimensions, as described in Section 3, is still
missing contributions related to the explicit dependence of the numerators upon ε and µi j . Enabling
HELAC to perform numerical computations of numerators in d = 4 − 2ε dimensions is therefore a
highly desirable path. In this Section we briefly sketch the procedure that we are developing to this
purpose, considering the case of a n−gluon amplitude at one loop as an example. In particular we
focus on the computation of the numerator of the graph shown in Figure 2.

ǫ2nǫ2n+1
20

21

22

2n−1

Figure 2: HELAC representation of a one-loop n−gluon amplitude.

Following standard HELAC notation [60–63], each external particle is labelled with an integer
2i (i ∈ [0, n − 1]), and the corresponding polarization vector is ε2i . Let ε(λ)2n and ε(λ)2n+1 denote the
polarization vectors of the two extra gluons originating from the cut of the one loop propagator,
which satisfy the relation

∑
λ ε
(λ)α
2n ε

(λ) β

2n+1 = gαβ . Following reference [64], we decompose the loop
momentum q, gamma matrices and the metric as follows,

q̄α = qα + q̃α, γ̄α = γα + γ̃α, ḡαβ = gαβ + g̃αβ (7)
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where the barred quantities live in d = 4 − 2ε dimensions and the tilded quantities refer to the
(d − 4)-dimensional contribution. Furthermore, we define

µ = q̃ · q̃ = /̃q/̃q (8)

d − 4 = g̃αβ g̃αβ = γ̃
αγ̃α (9)

Our goal is to compute the numerator in d = 4 − 2ε dimensions [65]:

N (q, µ, ε) (10)

Knowing that the parts proportional to µ and ε arise from the following contributions

q2X → µX∑
λ
ε
(λ)
2n · ε

(λ)

2n+1 X → (d − 4) X∑
λ

(
ε
(λ)

2n+1 · q
) (
ε
(λ)

2n+1 · q
)

X → µX (11)

the question is how to get X’s from the recursive equations.
With the notation X |Y denoting the coefficient of an arbitrary quantity X with respect to an arbitrary
quantity Y , we define

JN [q] = JN |q JN [ε2n ] = JN |ε2n
JαN [ε2n · q] = JN |ε2n ·q

YN [q] = JN [ε2n · q]
��
q

(12)

and
c1 = pN1

��
q

c2 = pN2

��
q

(13)

where N labels the current, JαN , at a given stage of the recursion. The above defined objects
(assuming that the label N1 is associated to the current containing the loop propagator) satisfy the
following recursive equations:

JαN = Vα (
JN1, pN1 ; JN2, pN2

)
+ µ (c1 + 2c2) JαN2

JN1 [q] (14)

JN [q] = (c1 − c2) JN1 · JN2 −
(
2pN1 + pN2

)
· JN2 JN1 [q] (15)

JN [ε2n ] = −
(
2pN1 + pN2

)
· JN2 JN1 [ε2n ] (16)

JαN [ε2n · q] = Vα (
JN1 [ε2n · q] , pN1 ; JN2, pN2

)
+ JN1 [ε2n ] (c1 + 2c2) JαN2

+ µ YN1 [q] (c1 + 2c2) JαN2
(17)

YN [q] = JN1 [ε2n · q] · JN2 −
(
2pN1 + pN2

)
· JN2YN1 [q] (18)

where N = N1 + N2, and

Vα (
JN1, pN1 ; JN2, pN2

)
≡ −

(
JN2 · (2pN1 + pN2)

)
JαN1

+
(
JN1 · (pN1 + 2pN2)

)
JαN2

+
(
JN1 · JN2

) (
pN1 − pN2

)α (19)
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represents the three-gluon vertex current.
The final form of the numerator takes the form

N (q, µ, ε) = J2n+2−2 · ε1 + (d − 4) J2n+2−2 [ε2n ] (p2n+1−2 − p2n+1) · ε1

+ µ
(
Y2n+1−2 [q] (p2n+1−2 − p2n+1) · ε1 −

(
J2n+1−2 [ε2n · q]

)
· ε1

)
(20)

Similar equations hold for all possible currents, including four-gluon vertices, quarks and ghosts.
Details on the numerical reconstruction of the amplitude in d = 4 − 2ε dimensions will appear in a
forthcoming publication.

5. Summary

We have presented an approach for computing two-loop integrands for arbitrary processes in
a fully automated way. Furthermore we have sketched the algorithm for the reduction of two-loop
amplitudes to Master Integrals. We also discussed the numerical reconstruction of the amplitude
in d = 4 − 2ε dimensions. These results are part of the ongoing efforts to develop Helac-2loop, a
framework for automated two-loop amplitude calculations.
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