
P
o
S
(
L
L
2
0
2
4
)
0
6
6

Refactorisation and Subtraction

Lorenzo Magnea,𝑎,∗ Calum Milloy,𝑎 Chiara Signorile-Signorile𝑏 and Paolo
Torrielli𝑎
𝑎Dipartimento di Fisica, Università di Torino, and INFN, Sezione di Torino
Via Pietro Giuria, 1 I-10125, Torino, Italy

𝑏Max-Planck-Institut für Physik, Boltzmannstrasse 8, 85748, Garching, Germany
E-mail: lorenzo.magnea@unito.it, calumwilliam.milloy@unito.it,
signoril@mpp.mpg.de, paolo.torrielli@unito.it

Infrared subtraction algorithms beyond next-to-leading order necessitate the analysis of multiple
infrared limits of scattering amplitudes, where several particles sequentially become soft or
collinear. In this contribution, we report on the study performed in Ref. [1], which investigates
these limits from the perspective of infrared factorisation, offering general definitions for
strongly-ordered soft and collinear kernels, expressed in terms of gauge-invariant operator matrix
elements. These definitions facilitate the identification of local subtraction counterterms for
strongly-ordered configurations, whose integrals are designed to cancel the IR poles of real-virtual
counterterms. This framework is validated at tree level for multiple emissions, and at one loop
for single and double emissions.

MPP-2024-134

Loops and Legs in Quantum Field Theory (LL2024)
14-19, April, 2024
Wittenberg, Germany

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:lorenzo.magnea@unito.it
mailto:calumwilliam.milloy@unito.it
mailto:signoril@mpp.mpg.de
mailto:paolo.torrielli@unito.it
https://pos.sissa.it/


P
o
S
(
L
L
2
0
2
4
)
0
6
6

Refactorisation and Subtraction Lorenzo Magnea

1. Introduction

High-order calculations of collider observables are crucial for achieving the theoretical pre-
cision required by current and upcoming experiments, and for identifying potential new physics
signals. Such calculations require, in turn, complete control over infrared (IR) divergences, which
becomes problematic at high orders in perturbation theory (see Ref. [2] for a recent review on the
topic). At next-to-leading order (NLO), general and efficient algorithms for the subtraction of IR
divergences have been developed [3, 4], and are implemented in simulation codes heavily used
by the experimental community. Extending subtraction algorithms to NNLO and beyond (see, for
example, [5–12]) is a challenging but necessary step to upgrade the accuracy standard of theoretical
predictions, relevant to collider phenomenology1. A significant obstacle in tackling this problem is
the appearance, starting at NNLO, of strongly-ordered singular configurations, which arise when
two or more partons become unresolved at a different rate. There is a subtle interplay between these
configurations and the infrared poles of mixed real-virtual counterterms, which has not so far been
systematically understood. The present work is a contribution in this direction.

In what follows, we focus on the construction of strongly-ordered subtraction counterterms
from the perspective of IR factorisation. We demonstrate how matrix elements of fields and Wilson
lines, which describe the factorised emission of soft and collinear particles, can be ‘refactorised’ in
strongly-ordered configurations. This procedure provides formal expressions for strongly-ordered
counterterms to all orders in perturbation theory, and identifies the pattern of cancellations between
such counterterms and the singularities involving mixed real and virtual corrections. Our discussion
is based on, but not limited to, the framework of local analytic sector subtraction [12, 14–19].

2. The architecture of infrared subtraction

To introduce our notation we start by considering the distribution of an IR-safe observable 𝑋 ,
expanded in powers of the strong coupling as

𝑑𝜎

𝑑𝑋
=
𝑑𝜎LO

𝑑𝑋
+ 𝑑𝜎NLO

𝑑𝑋
+ 𝑑𝜎NNLO

𝑑𝑋
+ . . . . (1)

The complexity of the subtraction problem emerges at NNLO, where the cancellation of IR diver-
gences entails considering double-virtual corrections 𝑉𝑉𝑛, integrated over an 𝑛-body phase space,
together with real-virtual contributions 𝑅𝑉𝑛+1, integrated over an (𝑛+1)-body phase space, and with
double-real radiation, 𝑅𝑅𝑛+2, integrated in an (𝑛 + 2)-body phase space. The observable NNLO
distribution is, in fact, given by

𝑑𝜎NNLO

𝑑𝑋
= lim

𝑑→4

[∫
𝑑Φ𝑛𝑉𝑉𝑛 𝛿𝑛 (𝑋) +

∫
𝑑Φ𝑛+1 𝑅𝑉𝑛+1 𝛿𝑛+1(𝑋) +

∫
𝑑Φ𝑛+2 𝑅𝑅𝑛+2 𝛿𝑛+2(𝑋)

]
. (2)

The relevant squared matrix elements are

𝑉𝑉𝑛 =

���A (1)
𝑛

���2+ 2Re
[
A (0)†

𝑛 A (2)
𝑛

]
, 𝑅𝑉𝑛+1 = 2Re

[
A (0)†

𝑛+1 A (1)
𝑛+1

]
, 𝑅𝑅𝑛+2 =

���A (0)
𝑛+2

���2, (3)

1Recent developments in this field are discussed in Ref. [13] and in the references therein.
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where A (𝑘 )
𝑚 is the 𝑘-loop correction to the 𝑚-point scattering amplitude for the process under

consideration. The double-virtual matrix element 𝑉𝑉𝑛 features up to quadruple poles in the
dimensional regulator 𝜖 = (4 − 𝑑)/2, while the real-virtual correction 𝑅𝑉𝑛+1 displays up to double
poles in 𝜖 , and up to two phase-space singularities. Finally, the double-real matrix element 𝑅𝑅𝑛+2

is finite in 𝑑 = 4, but it is affected by up to four phase-space singularities. At this order, we need to
consider all possible double- and single-unresolved limits of 𝑅𝑅𝑛+2, and carefully account for their
overlap; moreover, we have to properly subtract both the explicit poles and the single-unresolved
limits of the real-virtual contribution. We collectively characterise single unresolved limits by the
action of an operator L (1) on squared real-emission matrix elements, defined in such a way as to
remove any double counting. Similarly, double-unresolved limits are given by an operator L (2) , and
their overlap by L (12) . The action of these operators on double-real and real-virtual contributions
defines the minimal set of counterterms required for an NNLO subtraction approach. They read

𝐾
(1)
𝑛+2 = L (1)

𝑅𝑅𝑛+2 , 𝐾
(2)
𝑛+2 = L (2)

𝑅𝑅𝑛+2 , (4)

𝐾
(12)
𝑛+2 = L (12)

𝑅𝑅𝑛+2 , 𝐾
(RV)
𝑛+1 = L (1)

𝑅𝑉𝑛+1 . (5)

Upon designing a set of suitable phase-space mappings, to factorise resolved and unresolved phase-
space measures, we can proceed to define integrated counterterms, as

𝐼
(1)
𝑛+1 =

∫
𝑑Φ𝑛+2

rad,1 𝐾
(1)
𝑛+2 , 𝐼

(2)
𝑛 =

∫
𝑑Φ𝑛+2

rad,2 𝐾
(2)
𝑛+2 , (6)

𝐼
(12)
𝑛+1 =

∫
𝑑Φ𝑛+2

rad,1 𝐾
(12)
𝑛+2 , 𝐼

(RV)
𝑛 =

∫
𝑑Φ𝑛+1

rad,1 𝐾
(RV)
𝑛+1 , (7)

where the radiative phase spaces are defined by

𝑑Φ𝑛+2 =
𝜍𝑛+2
𝜍𝑛+1

𝑑Φ𝑛+1 𝑑Φ
𝑛+2
rad,1 , 𝑑Φ𝑛+2 =

𝜍𝑛+2
𝜍𝑛

𝑑Φ𝑛 𝑑Φ
𝑛+2
rad,2 , 𝑑Φ𝑛+1 ≡ 𝜍𝑛+1

𝜍𝑛
𝑑Φ𝑛 𝑑Φ

𝑛+1
rad,1 , (8)

with 𝜍𝑝 denoting the appropriate symmetry factors. Putting together the ingredients assembled so
far, we can now write a fully subtracted form of the generic NNLO distribution,

𝑑𝜎NNLO

𝑑𝑋
=

∫
𝑑Φ𝑛

[
𝑉𝑉𝑛 + 𝐼 (2)𝑛 + 𝐼 (RV)

𝑛

]
𝛿𝑛 (𝑋) (9)

+
∫

𝑑Φ𝑛+1

[(
𝑅𝑉𝑛+1 + 𝐼 (1)𝑛+1

)
𝛿𝑛+1(𝑋) −

(
𝐾

(RV)
𝑛+1 + 𝐼 (12)

𝑛+1

)
𝛿𝑛 (𝑋)

]
+

∫
𝑑Φ𝑛+2

[
𝑅𝑅𝑛+2 𝛿𝑛+2(𝑋) − 𝐾 (1)

𝑛+2 𝛿𝑛+1(𝑋) −
(
𝐾

(2)
𝑛+2 − 𝐾

(12)
𝑛+2

)
𝛿𝑛 (𝑋)

]
.

We note that the third line is integrable in Φ𝑛+2 by construction, since all singular regions have
been subtracted with no double counting. In the second line, the integral 𝐼 (1)

𝑛+1 cancels the 𝜖 poles of
𝑅𝑉𝑛+1, but their combination is still affected by phase-space singularities. Those affecting 𝐼 (1)

𝑛+1 and
𝑅𝑉𝑛+1 are cured by 𝐼 (12)

𝑛+1 and 𝐾 (RV)
𝑛+1 , respectively: we conclude that the second line in eq. (9) is free

from phase-space singularities. On the other hand, there is in principle no guarantee that the 𝜖 poles
of 𝐾 (RV)

𝑛+1 will cancel those of 𝐼 (12)
𝑛+1 , given the considerable degree of arbitrariness in constructing

radiative counterterms. The goal of this note is to provide precise definitions of the counterterms
that are geared towards making this cancellation automatic. A more detailed discussion is presented
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in Sec. 2.2 of [1]. Having established the finiteness and integrability of both the second and the
third line of eq. (9), the cancellation of poles in the first line directly follows from the KLN theorem.

The arguments presented in this section can be formally generalised to N3LO, and beyond. This
requires organising a larger number of singular configurations and related overlaps. To illustrate
this, we can consider triple-real corrections arising at N3LO: in that case, one needs to define
unresolved limits and integrated counterterms as

𝐾
(h)
𝑛+3 = L (h)

𝑅𝑅𝑅𝑛+3 , 𝐼
(h)
𝑛+3−𝑞 =

∫
𝑑Φ𝑛+3

rad,𝑞 𝐾
(h)
𝑛+3 , h ∈ {3, 13, 23, 123} , (10)

where 𝑞 is the number of particles going unresolved at the highest rate. For instance, L (3)

collects the limits where three particles become unresolved at the same rate; L (13) corresponds
to the strongly-ordered case where one particle becomes unresolved faster than the other two;
L (23) describes the configurations where two particles become unresolved at the same rate, but
significantly faster than the third particle; finally, L (123) describes the strongly-ordered scenario
where each particle becomes unresolved at a different rate. Including mixed real-virtual corrections
at one and two loops, one finds that N3LO subtraction would require a total of 11 local counterterm
functions, 5 of which involving strong ordering, with the remaining 6 corresponding to uniform
limits. Generalising further to N𝑘LO, the number of required counterterms turns out to be given by
𝑐(𝑘) = 2𝑘+1 −2− 𝑘 , of which only 𝑘 (𝑘 +1)/2 corresponding to uniform limits: clearly, the problem
of handling the cancellations between integrated strongly-ordered and real-virtual counterterms
becomes increasingly significant at higher perturbative orders.

3. Democratic counterterms to any order

In this section we exploit the factorisation properties of gauge amplitudes to find explicit
expressions for the democratic counterterms encoding uniform soft and collinear limits, following
the discussion in Ref. [14]. This approach relies on the knowledge of the IR structure of virtual
corrections, which is used as a starting point to infer suitable soft and collinear approximants of real
corrections. We refer to such a method as a top-down approach, since we first analyse the first line
of eq. (9), identify the required integrated counterterms, and then the corresponding integrands,
which enter the second and the third lines.

The infrared factorisation formula for massless gauge-theory amplitudes reads [20–23]

A𝑛

(
{𝑝𝑖}

)
=

𝑛∏
𝑖=1

[ J𝑖

(
𝑝𝑖 , 𝑛𝑖

)
JE𝑖

(
𝛽𝑖 , 𝑛𝑖

) ] S𝑛

(
{𝛽𝑖}

)
H𝑛

(
{𝑝𝑖}, {𝑛𝑖}

)
. (11)

The soft, jet, and eikonal jet functions S𝑛, J𝑖 and JE𝑖 appearing in eq. (11) have explicit definitions
(see for example Ref. [2]), in terms of operator matrix elements involving semi-infinite Wilson lines
aligned with the external-particle velocities 𝛽𝑖 ,

Φ𝛽𝑖 (∞, 0) ≡ 𝑃 exp
{
i𝑔𝑠T𝑎

∫ ∞

0
𝑑𝑧 𝛽𝑖 · 𝐴𝑎 (𝑧)

}
, (12)

as well as auxiliary Wilson lines along the directions 𝑛𝑖 (𝑛2
𝑖
≠ 0), and quantum fields. In eq. (12),

𝑃 denotes path ordering, 𝐴𝑎 represents the gluon field, and 𝑔𝑠 is the strong coupling constant. In
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the subtraction context, S𝑛, J𝑖 and JE𝑖 can be considered special cases of more general functions,
which can be used to model soft and collinear real radiation. For instance, the eikonal form factor

S𝑛, 𝑓1... 𝑓𝑚

(
{𝛽𝑖}; {𝑘 𝑗 , _ 𝑗}

)
≡ ⟨{𝑘 𝑗 , _ 𝑗}| 𝑇

𝑛∏
𝑖=1

Φ𝛽𝑖 (∞, 0) |0⟩ , (13)

describes the radiation of 𝑚 soft particles of flavours 𝑓 𝑗 , momenta 𝑘 𝑗 and spin polarisations _ 𝑗

( 𝑗 = 0, . . . , 𝑚), from 𝑛 Wilson lines representing hard particles, including virtual corrections in the
soft approximation. Analogously, collinear radiation from an external particle 𝑖 can be modelled
via collinear form factors such as

J 𝛼
𝑞, 𝑓1... 𝑓𝑚

(
𝑥; 𝑛; {𝑘 𝑗 , _ 𝑗}

)
≡ ⟨{𝑘 𝑗 , _ 𝑗}| 𝑇

[
�̄�𝛼 (𝑥)Φ𝑛 (𝑥,∞)

]
|0⟩ , (14)

where we picked as an example a quark jet, 𝑗 = 1, . . . , 𝑚, and the case 𝑚 = 1 represents the purely
virtual contribution, J𝑓𝑖 , 𝑓𝑖 = J𝑖 . Similarly, the soft function in eq. (11) corresponds to the 𝑚 = 0
case of eq. (13). Eikonal jets are obtained by replacing the quark field in eq. (14) with an appropriate
Wilson line, aligned with the classical quark trajectory.

At cross-section level, eikonal and collinear form factors must be squared, building up radiative
soft and jet functions, which are fully local in the degrees of freedom of (multiple) soft and
collinear real radiation. In the case of soft functions, the definition is straightforward [14], while
collinear emissions require more care. Indeed, radiative jet functions must account for hard-collinear
emissions to have non-zero momentum: therefore, at cross-section level, one of the two collinear
form factors is evaluated at a shifted position 𝑥, which is Fourier-conjugate to the total momentum
ℓ carried by final-state particles. We define then

𝐽
𝛼𝛽

𝑓 , 𝑓1... 𝑓𝑚

(
ℓ; 𝑛; {𝑘 𝑗}

)
=
∑︁
{_ 𝑗 }

∫
𝑑𝑑𝑥 eiℓ ·𝑥 J 𝛼,†

𝑓 , 𝑓1... 𝑓𝑚

(
0; 𝑛; {𝑘 𝑗 , _ 𝑗}

)
J 𝛽

𝑓 , 𝑓1... 𝑓𝑚

(
𝑥; 𝑛; {𝑘 𝑗 , _ 𝑗}

)
. (15)

In eq. (15), 𝑓 denotes the flavour of the parent particle, carrying the open spin indices 𝛼 and 𝛽.
Performing the 𝑥 integral will fix ℓ =

∑
𝑗 𝑘 𝑗 . At tree level, for 𝑚 = 2, it is straightforward to show

that 𝐽 (0)
𝑓 , 𝑓1 𝑓2

reproduces the tree-level splitting kernel for 𝑓 → 𝑓1 + 𝑓2. Integrating eq. (15) over the
radiative 𝑚-particle phase space, and summing over 𝑚, one finds

∞∑︁
𝑚=1

∑︁
{ 𝑓𝑖 }

∫
𝑑Φ𝑚 𝐽

𝛼𝛽

𝑞, 𝑓1... 𝑓𝑚
= Disc

{∫
𝑑𝑑𝑥 eiℓ ·𝑥 ⟨0| 𝑇

[
Φ𝑛 (∞, 𝑥)𝜓𝛽 (𝑥)�̄�𝛼 (0)Φ𝑛 (0,∞)

]
|0⟩

}
. (16)

The r.h.s. of eq. (16) is the discontinuity of a two-point function in the presence of Wilson lines,
which can be shown to be IR finite order by order. Such a finiteness condition is crucial for applying
factorisation arguments to the construction of local IR counterterms at any order in perturbation
theory [14]: similar conditions apply for soft functions and eikonal jets. Indeed, by expanding
the l.h.s. of eq. (16), and of its analogue for the soft function, we find order-by-order finiteness
conditions that embody the KLN cancellations. At NLO, for example

𝑆
(1)
𝑛

(
{𝛽𝑖}

)
+
∫

𝑑Φ(𝑘) 𝑆 (0)𝑛,𝑔

(
{𝛽𝑖}; 𝑘

)
= finite , (17)∑︁

𝑓1

∫
𝑑Φ(𝑘1)𝐽 (1)𝛼𝛽𝑓 , 𝑓1

(ℓ; 𝑘1) +
∑︁
𝑓1, 𝑓2

𝜍 𝑓1 𝑓2

∫
𝑑Φ(𝑘1)𝑑Φ(𝑘2) 𝐽 (0) 𝛼𝛽𝑓 , 𝑓1 𝑓2

(ℓ; 𝑘1, 𝑘2) = finite , (18)
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where 𝜍 𝑓1 𝑓2 is a phase-space symmetry factor. The conditions in eqs. (17-18) immediately suggest
that the integrands of the real-radiation contributions can serve as candidate soft and collinear local
NLO counterterms. At NNLO, the analogues of eqs. (17-18) involve a double-virtual correction, a
real-virtual term and a double-radiative function, as expected from general IR-cancellation theorems.
It is important to notice that counterterms identified via finiteness relations directly reproduce only
uniform infrared limits. The construction of strongly-ordered counterterms from factorisation is
discussed in the next section.

4. Strongly-ordered counterterms to any order

In this section we aim to express strongly-ordered limits in terms of universal operator matrix
elements, in the spirit of factorisation. To deduce their form, we start by considering uniform
double-unresolved limits, and applying strong-ordering conditions. We analyse the soft limit first.
The tree-level double-soft current for gluons 1 and 2 with momenta 𝑘1 and 𝑘2 [24] simplifies
considerably in the strongly-ordered limit in which 𝑘2 ≪ 𝑘1 ≪ `, with ` the hard scale of the
process. The corresponding form factor is given by an interesting ‘refactorisation’ of the double-
radiative soft function:[

S (0)
𝑛; 𝑔,𝑔

]𝑎1𝑎2

{𝑑𝑖𝑒𝑖 }

(
{𝛽𝑖}; 𝑘1, 𝑘2) ≡ ⟨𝑘2, 𝑎2 | 𝑇

[
Φ

𝑎1𝑏
𝛽𝑘1

(0,∞)
𝑛∏
𝑖=1

Φ
𝑐𝑖

𝛽𝑖 , 𝑑𝑖
(∞, 0)

]
|0⟩ (19)

× ⟨𝑘1, 𝑏 | 𝑇
[ 𝑛∏
𝑖=1

Φ𝛽𝑖 , 𝑐𝑖𝑒𝑖 (∞, 0)
]
|0⟩

���
tree

=

[
S (0)
𝑛+1, 𝑔

]𝑎2, 𝑎1𝑏

{𝑑𝑖𝑐𝑖 }

(
𝛽𝑘1 , {𝛽𝑖}; 𝑘2

) [
S (0)
𝑛, 𝑔

]
𝑏, {𝑐𝑖𝑒𝑖 }

({𝛽𝑖}; 𝑘1) .

Eq. (19) can be interpreted as follows: gluon 1 is soft compared to the 𝑛 hard Born partons, but
appears as hard when probed by gluon 2, with 𝑘2 ≪ 𝑘1. The original system of 𝑛 Wilson lines
thus radiates the harder gluon 1, which then ‘Wilsonises’: indeed, at this stage, the new system of
(𝑛 + 1) Wilson lines radiates the softer gluon 2. This is described by a factorised matrix element,
where gluon 2 remains a final-state parton, while gluon 1 plays the double role of final-state parton
(when radiated by one of the 𝑛 original hard legs) and of Wilson line in the adjoint representation
(when radiating gluon 2). Tree-level soft refactorisation has been tested against the expressions in
Ref. [25] up to 3 gluons, and it is natural to conjecture its validity for any number of gluons.

In the case of multiple collinear emissions, the situation is more involved due to spin corre-
lations, but a refactorised form can still be identified. For instance, the NNLO strongly-ordered
collinear configuration for a 𝑞 → 𝑞′1 𝑞

′
2 𝑞3 branching is given by

lim
\12≪\13→0

𝑅𝑅𝑛+2 =
(8𝜋𝛼𝑠) 2

𝑠12 𝑠[12]3
𝑃
𝜌𝜎
𝑞→𝑔𝑞

(
𝑧 [12] , 𝑞⊥

)
𝑑𝜌`

(
𝑘 [12]

)
× 𝑃`a

𝑔→𝑞�̄�

(
𝑧1/𝑧 [12] , 𝑘⊥

)
𝑑𝜎a

(
𝑘 [12]

)
𝐵𝑛 , (20)

where the intermediate-particle momentum is 𝑘 [12] ≡ 𝑘1 + 𝑘2, its collinear energy fraction is
𝑧 [12] ≡ 𝑧1 + 𝑧2 = 1 − 𝑧3, and 𝑠[12]3 = 2 𝑘 [12] · 𝑘3. Finally, 𝑑`a (𝑘) = −𝑔`a + (𝑘`𝑛a + 𝑘a𝑛`)/(𝑘 · 𝑛)
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is the intermediate gluon polarisation sum. As expected, the same result can be written in terms of
an appropriate convolution of radiative jet functions:∫

𝑑𝑑ℓ

(2𝜋)𝑑

[
lim

\12≪\13→0
𝐽
(0)
𝑞,𝑞𝑞′�̄�′ (ℓ; 𝑘1, 𝑘2, 𝑘3)

]
≡

∫
𝑑𝑑ℓ

(2𝜋)𝑑
𝐽
(0)
𝑞,𝑔𝑞;𝑔,𝑞′�̄�′ (ℓ; 𝑘1, 𝑘2, 𝑘3)

=

∫
𝑑𝑑ℓ

(2𝜋)𝑑
𝐽

;𝜌𝜎 (0)
𝑞,𝑔𝑞

(
ℓ; 𝑘 [12] , 𝑘3

) ∫ 𝑑𝑑ℓ′

(2𝜋)𝑑
𝐽
𝜌𝜎 (0)
𝑔,𝑞′�̄�′ (ℓ′; 𝑘1, 𝑘2) , (21)

where the first line introduces the notation for a strongly-ordered jet function, outlining the sequential
splittings involved. The integrals over 𝑑𝑑ℓ and 𝑑𝑑ℓ′ address the delta-function constraints in the
corresponding jet-function definitions, which ensure that the parent parton momentum equals the
total momentum of its decay products. Spin indices of the parent quark are not explicitly shown,
and are replaced by the semicolon. The Lorentz spin indices after the semicolon correspond to
the daughter gluon produced by the splitting. Analogous versions eq. (21) hold for splittings of
different flavours, and generalise to larger numbers of emitted particles [1].

As mentioned in Section 1, strongly-ordered counterterms have to combine, upon integration
over the most unresolved parton, with real-virtual counterterms, cancelling their poles. In order to
make such an interplay manifest, it is useful to exploit once more the idea of refactorisation. We
need to consider one-loop radiative soft and jet functions: for the sake of illustration, we focus
on the former. We note that, contrary to their virtual counterpart, they do not reduce to pure
counterterms, and contain both IR poles and finite contributions. For our purposes, they can be
considered as scattering amplitudes with Wilson-line sources, which points to a natural factorisation
of their virtual IR poles. Indeed, for example, applying the standard soft-jet-hard factorisation to
the single-radiative soft function leads to

S𝑛,𝑔

(
{𝛽𝑖}; 𝑘

)
= S𝑛+1

(
{𝛽𝑖}, 𝛽𝑘)

J `
𝑔,𝑔 (0; 𝑘)
JE𝑔 (𝛽𝑘)

SH,`
𝑛,𝑔

(
{𝛽𝑖}; 𝑘

)
, (22)

where the factor SH,`
𝑛,𝑔 is finite in 𝑑 = 4. Expanding to one-loop order, the terms containing IR

poles are thus

S (1)
𝑛,𝑔

(
{𝛽𝑖}; 𝑘

)
=

[
S (1)
𝑛+1

(
{𝛽𝑖}, 𝛽𝑘

)
− J (1)

E𝑔 (𝛽𝑘)
]
S (0)
𝑛,𝑔

(
{𝛽𝑖}; 𝑘

)
+ J (1)`

𝑔,𝑔 (0; 𝑘) S (0)`
𝑛,𝑔

(
{𝛽𝑖}; 𝑘

)
. (23)

We will show in the next section how to reconstruct from eq. (23) (upon squaring) the soft contribu-
tion to 𝐾 (RV)

𝑛+1 , plus hard-collinear corrections, which will need to be subtracted. The remaining soft
poles will naturally cancel against those arising in the integrated strongly-ordered soft counterterm.

5. Engineering cancellations

In this section we present a construction of strongly-ordered counterterms, starting from the
expression of the real-virtual counterterm 𝐾

(RV)
𝑛+1 , such that the combination 𝐾 (RV)

𝑛+1 + 𝐼 (12)
𝑛+1 is free

of IR poles. For the sake of illustration, we focus on the soft component. We begin by constructing
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the cross-section-level radiative soft function from factorisation, using eq. (23). We find

𝑆
(1)
𝑛,𝑔

(
{𝛽𝑖}; 𝑘

)
= S (0)

𝑛,𝑔

† (
{𝛽𝑖}; 𝑘

) [
𝑆
(1)
𝑛+1

(
{𝛽𝑖}, 𝛽𝑘

)
− 𝐽 (1)E𝑔 (𝛽𝑘)

]
S (0)
𝑛,𝑔

(
{𝛽𝑖}; 𝑘

)
+
∫

𝑑𝑑ℓ

(2𝜋)𝑑
(
S (0)`
𝑛,𝑔

(
{𝛽𝑖}; ℓ

) )†
𝐽
(1)`a
𝑔,𝑔 (ℓ; 𝑘) S (0)a

𝑛,𝑔

(
{𝛽𝑖}; ℓ

)
. (24)

We now use the finiteness conditions, suitably replacing one-loop factors with tree-level radiative
factors. This leads to

𝑆
(1)
𝑛,𝑔

(
{𝛽𝑖}; 𝑘1

)
+

∫
𝑑Φ(𝑘2)

{
𝑆
(0)
𝑛;𝑔,𝑔

(
{𝛽𝑖}; 𝑘 [12] ; 𝑘2

)
(25)

−
(
S (0)
𝑛,𝑔

(
{𝛽𝑖}; 𝑘 [12]

))†
𝐽
(0)
E𝑔 ,𝑔 (𝛽𝑘1 ; 𝑘2) S (0)

𝑛,𝑔

(
{𝛽𝑖}; 𝑘 [12]

)
+

∫
𝑑𝑑ℓ

(2𝜋)𝑑
(
S (0) `
𝑛,𝑔

(
{𝛽𝑖}; ℓ

))†∑︁
𝑓1, 𝑓2

𝐽
(0) `a
𝑔, 𝑓1 𝑓2

(ℓ; 𝑘1, 𝑘2) S (0) a
𝑛,𝑔

(
{𝛽𝑖}; ℓ

)}
= finite .

We see that the refactorisation of strongly-ordered soft radiation suggests an expression for the soft
component of the strongly-ordered counterterm 𝐾

(12)
𝑛+2 . Indeed, we can take the integrand appearing

in eq. (25) as a definition of the local counterterm. With simple steps, one gets

𝐾
(12, s)
𝑛+2 = H (0)

𝑛

† ∑︁
𝑓1, 𝑓2

[
𝑆
(0)
𝑛; 𝑓 [12] , 𝑓2

(
𝑘 [12] , 𝑘2

)
+ 𝑆 (0)

𝑛, 𝑓 [12]

(
𝐽
(0)
𝑓 [12] , 𝑓1 𝑓2

− 𝐽 (0)E[12] , 𝑓2

)]
H (0)

𝑛 . (26)

In the soft sector, 𝐾 (12, s)
𝑛+2 cancels all poles of 𝐾 (RV, s)

𝑛+1 by construction. In fact, the explicit poles of
the soft component 𝐾 (RV)

𝑛+1 are encoded in the radiative, one-loop soft function, so that we have

𝐾
(RV, s)
𝑛+1 = H (0)

𝑛

†
𝑆
(1)
𝑛,𝑔 H (0)

𝑛 + finite . (27)

It is then straightforward to verify the cancellation occurring between 𝐾 (RV, s)
𝑛+1 and 𝐾 (12, s)

𝑛+2 , upon
integrating the latter over 𝑑Φ(𝑘2). The same steps apply to the collinear case, where the hard-
collinear component of the real-virtual counterterm can be written as

𝐾
(RV, hc)
𝑛+1, 𝑖 = H (0)

𝑛

† ∑︁
𝑓1, 𝑓2

𝐽
(0) , hc
𝑓𝑖 , 𝑓1 𝑓2

[
𝑆
(1)
3 − 𝐽 (1)E𝑖 +

2∑︁
𝑘=1

𝐽
(1) , hc
𝑓𝑘 , 𝑓𝑘

]
H (0)

𝑛 , (28)

and the corresponding strongly-ordered counterterm reads

𝐾
(12, hc)
𝑛+2,𝑖 = H (0)

𝑛

† ∑︁
𝑓1, 𝑓2, 𝑓3

[
𝐽
(0) , hc
𝑓𝑖 , 𝑓1 𝑓2

( �̄�1, �̄�2) 𝑆 (0)3, 𝑓3 − 𝐽
(0) , hc
𝑓𝑖 , 𝑓1 𝑓2

(𝑘1, 𝑘2) 𝐽 (0)E𝑖 , 𝑓3

+
∑︁

𝑘𝑙={12,21}
𝐽
(0) , hc
𝑓𝑖 , 𝑓 [𝑘3] 𝑓𝑙

(
𝐽
(0)
𝑓 [𝑘3] , 𝑓𝑘 𝑓3

− 𝐽 (0)E𝑘 , 𝑓3

)]
H (0)

𝑛 . (29)

Again, the pole cancellation between eq. (28) and the integral of eq. (29) can be easily proven by
exploiting finiteness relations involving one-loop and radiative soft and jet functions.
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6. Outlook

In this contribution we have outlined a procedure to identify local subtraction counterterms
describing the singular behaviour of real-radiation in soft and collinear limits, paying special
attention to strongly-ordered configurations. We have presented the general structure of subtraction
counterterms at NNLO, and we have sketched it at N3LO, displaying a pattern that facilitates
the generalisation to higher orders. Our procedure for constructing counterterms starts from the
all-order factorisation of virtual amplitudes, and uses finiteness relations to deduce the form of
infrared counterterms for real radiation, reversing the standard approach to infrared subtraction2.
All counterterms are expressed in terms of gauge-invariant matrix elements of fields and Wilson
lines. We have focused on the main challenge associated with strongly-ordered configurations,
namely ensuring that the integrals of the corresponding counterterms cancel the poles of mixed
real-virtual contributions. Even if our approach does not immediately translate into a concrete
subtraction algorithm, it provides crucial insights on the architecture of infrared subtraction to all
orders. Further work is underway to build an algorithmic implementation of these ideas.
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