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To do experimentally clean measurements, one of the proposed strategies is to use track-based
observables, which means working exclusively with final-state charged hadrons (tracks). The field-
theoretic framework introduced to calculate track-based observables is the so-called track function
formalism. Although the case of most experimental interest is track, this framework, based on
the factorization and universality of collinear divergences, can be applied to measurements on any
subset of final-state hadrons with a set of particular quantum numbers. While the track function
formalism has existed for eleven years, it is just in the past few years that we have extended it
beyond leading order, making it practical in higher-order calculations comparable to experimental
data. We illustrate its power by probing into the kinematic singularities of energy correlators on
tracks: we calculate the projected two- to six-point energy correlators on tracks in the collinear
limit at next-to-leading logarithmic (NLL) accuracy; we give the factorization theorem for the
track energy-energy correlation (EEC) observable in the back-to-back limit, and compute the track
EEC at next-to-leading logarithm (NLL). This leads to the first full prediction of the track EEC in
peturbation theory, making the track correlator a prime candidate for precision QCD studies.
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1. Introduction

In the past few years, there has been growing interest in applying energy correlators to probe
into both perturbative and nonperturbative QCD in vacuum and medium. The significance of the
comparison between theory and experimental data relies on the precision that the calculations and
measurements of interesting signals achieve. In perturbation theory, for the phase space where
collinear and/or soft radiation dominate, it is crucial to do resummation to high accuracy for the
logarithmically enhanced contributions. From the perspective of collider experiments, due to the
exceptional efficiency and precision of trackers, track-based observables that are reconstructed from
the kinematics of final-state charged particles (tracks) can be measured with superior resolution and
reduce the effect of pileup, which helps in the measurements strongly relying on angular resolution,
like jet substructure.

Our work is a combination of modern techniques for fixed-order calculations and resummation,
and a field-theoretic scheme for calculations exclusively on a subset of final-state hadrons.

2. Energy correlators

The 𝑘-point energy correlator is defined as a correlation function of 𝑘 energy flow operators,

〈E(®𝑛1) · · · E(®𝑛𝑘)〉 ≡
〈0|O†E(®𝑛1) · · · E(®𝑛𝑘)O|0〉

〈0|O†O|0〉
(1)

where the energy flow operator E(®𝑛),

E(®𝑛) = lim
𝑟→∞

𝑟2
∫ ∞

0
d𝑡 ®𝑛𝑖𝑇0𝑖 (𝑡, 𝑟 ®𝑛) ,

E(®𝑛) |𝑋〉 =
∑
𝑎

𝑝0
𝑎𝛿

(2) (Ω ®𝑝𝑎 −Ω®𝑛) |𝑋〉 , (2)

measures the total, asymptotic energy per unit solid angle at the direction ®𝑛 [1–5]. In this way,
the 𝑘-point energy correlator evaluates the energy fluxes measured by 𝑘 detectors placed distant
from the collision. It depends on

(𝑘
2
)
= 𝑘 (𝑘 − 1)/2 independent angular variables. For the sake

of experimental convenience, the projected 𝑘-point energy correlators have been introduced, and
here we focus on the longest side definition [5], which means integrating energy correlators over all
variables about shape except the longest side (i.e., the largest angular size, 𝑥𝐿),

d𝜎 [𝑘 ]

d𝑥𝐿
=

∫
d ®Ω𝛿

(
𝑥𝐿 − 1 − ®𝑛1 · ®𝑛2

2

) ∏
1≤𝑖< 𝑗≤𝑘
𝑖+ 𝑗>3

Θ( | ®𝑛1 − ®𝑛2 | − |®𝑛𝑖 − ®𝑛 𝑗 |)〈E(®𝑛1) · · · E(®𝑛𝑘)〉 . (3)

The energy correlators have a number of interesting features. First, the soft contributions
are suppressed due to the energy weighting. This soft insensitivity renders the energy correlators
single-logarithmic (soft insensitive) in the collinear limit. Second, the energy correlators are ar-
guably the simplest class of energy flow observables. They’re the only event shapes that have been
fully calculated analytically beyond O(𝛼𝑠) [6–10]. Although energy correlators have perturbative
simplicity, their interesting kinematic singularities are not obscured. One usually uses the factor-
ization theorems and renormalization group (RG) techniques to resum the large logarithms in the
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singular regions (the collinear limit and the back-to-back limit). For example, in the two-point case,
also called energy-energy correlation (EEC) with the definition that phenomenologists usually use
reading [6]

d𝜎
d𝑥𝐿

≡
∑
𝑚

∑
1≤𝑖, 𝑗≤𝑚

∫
dΦ𝑚 |M𝑚 |2

𝐸𝑖𝐸 𝑗

𝑄2 𝛿

(
𝑥𝐿 −

1 − cos 𝜒𝑖 𝑗
2

)
, (4)

the angular distance 𝑥𝐿 → 0 corresponds to the angle of the two observed particles 𝜒𝑖 𝑗 → 0, which
means the two energy flow operators are evaluated at very similar directions. This is the collinear
limit. And 𝑥𝐿 → 1 corresponds to the two particles being back-to-back, which is the Sudakov
region [11, 12].

In the collinear limit, the energy correlators have further features. In the following we focus
on the projected 𝑁-point energy correlators (𝑁 ∈ N+) in the 𝑥𝐿 → 0 limit which refers to that all
the energy flow operators, or say detectors, are set at closely matching angles. This allows us to
probe into the energy correlators within a jet. In the perturbative region, the projected 𝑁-point
correlator exhibits a universal scaling behaviour controlled by the twist-two spin-𝑁 + 1 anomalous
dimensions, that is, 𝑥𝛾 (𝑁+1,𝛼𝑠)

𝐿 /𝑥𝐿 [5, 13, 14]. While this formula holds strictly in N = 4 super
Yang-Mills theory (SYM), it’s an approximate relation in real-world QCD. For example, for the
EEC in QCD, its dependence on the angular distance 𝑥𝐿 is all encoded in the classical scaling 1/𝑥𝐿
and the OPE coefficients (see Eq. (3.16) in Ref. [15]1). Besides the scaling for the perturbative
region, the projected energy correlators exhibit the ability to conveniently visualize hadronization
process inside jets [16–21]. By the change in scaling behaviour, one can clearly see the transition
from perturbatively interacting quarks and gluons to free hadrons.

The back-to-back energy-energy correlation on all particles has been studied in Refs. [11, 12],
where the factorization formulas and the resummation to N3LL′ have been achieved. Experimental
measurements probing into this region have started.

3. Incorporating track functions

3.1 Definition of track functions

The aforementioned energy flow observables act on all final-state particles. On the other hand,
one can select what group of particles to observe by their charge, strangeness, or any other pieces
of information of quantum numbers, which means observing a subset of final state particles. This
makes the correlations of energy flows be a more exclusive observable with extra quantum number
information. The example of most experimental interest is track-based observable reconstructed
from charged particles. High energy jets in hadron colliders require small-angle measurements and
thus surely benefit from the exceptional angular resolution of tracking system.

To make theoretical predictions on a subset 𝑅 of final-state particles, the track function was
introduced [22, 23]. Based on the collinear factorization theorem [24], the track function is a
universal nonperturbative function, and can absorb partonic-level collinear divergences, behaving
in the way similar to fragmentation functions. It is a probability distribution function, usually
denoted by 𝑇 . 𝑇𝑖 (𝑥) describes the probability density of finding in a jet initiated by an energetic

1Note that in Ref. [15], 𝑥𝐿 is denoted by 𝑧.
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parton 𝑖 the particles in the subset 𝑅 (having a set of particular quantum numbers) with the total
momentum fraction 𝑥. Because the subset of most experimental interest is that of charged particles,
the track function is named after track. So in this paper, all the plots are made for the charged
particle case, while our framework applies to broader situations other than observables on tracks.
In the following, we use the subset 𝑅 and track interchangeably.

The operator definition of the quark track function in light-cone gauge reads [22, 23, 25–28]

𝑇𝑞 (𝑥) =
∫

d𝑦+d2𝑦⊥𝑒
𝑖𝑘−𝑦+/2 1

2𝑁𝑐

∑
𝑅,�̄�

𝛿

(
𝑥 −

𝑃−
𝑅

𝑘−

)
tr

[𝛾−
2
〈0|𝜓(𝑦+, 0, 𝑦⊥) |𝑅�̄�〉〈𝑅�̄� |�̄�(0) |0〉

]
, (5)

with the gluon track function defined in a similar way. To get a gauge-invariant definition in
general covariant gauges, Wilson line is required. As one may see from the definition, the track
function describes the total kinematics of a set of particles with no limit on the number, and thus
the evolution equation of track functions tracks all the momentum fractions of a collinear splitting
at a time, while the DGLAP equation of single-hadron fragmentation functions tracks one of the
partonic branchings at a time. This leads to the nonlinearity of the track function renormalization
group evolution (RGE).

3.2 Energy correlators on tracks

To convert an energy correlator on all final-state particles to that on tracks is to convert the
energy flow operators measuring energy flows on all final states to that only on tracks, here denoted
by E𝑅. The correlator on tracks and the partonic level one are connected by moments of track
functions through a factorization formula [26],

〈E𝑅 (®𝑛1)E𝑅 (®𝑛2) · · · E𝑅 (®𝑛𝑘)〉 =
∑

𝑎1,𝑎2, · · · ,𝑎𝑘

𝑇𝑎1 (1)𝑇𝑎2 (1) · · ·𝑇𝑎𝑘 (1)〈E𝑎1 (®𝑛1)E𝑎2 (®𝑛2) · · · E𝑎𝑘 (®𝑛𝑘)〉

+[contact terms] , (6)

and the moments, as nonperturbative numbers, do not take part in the phase space integration, which
allows us, at any loop order, to directly apply perturbative calculation techniques to calculations on
tracks.

4. Collinear limit

In the collinear limit, the projected 𝑁-point energy correlator on tracks factorizes into a hard
function and a jet function describing angular measurements with the dependence on track function
moments [18], (

dΣ[𝑁 ]

d𝑥𝐿

)
tr
= ®𝐻 ⊗ ®𝐽 [𝑁 ]

tr , (7)

where the hard function ®𝐻 and the jet function ®𝐽 [𝑁 ]
tr are in flavour space. Due to the difference

between the hard scale ∼ 𝑄 and the jet scale ∼ √
𝑥𝐿𝑄, the collinear correlator has large logarithms

which can be resumed by RG evolution:

LL: 𝛼𝑙
𝑠

[
ln𝑙−1 𝑥𝐿

𝑥𝐿

]
+
, NLL: 𝛼𝑙

𝑠

[
ln𝑙−2 𝑥𝐿

𝑥𝐿

]
+
, NNLL: 𝛼𝑙

𝑠

[
ln𝑙−3 𝑥𝐿

𝑥𝐿

]
+
. (8)
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Figure 1: The ratio of the projected energy correlators (PEC) computed on charged hadrons vs. all hadrons.
(a) Results from Pythia, and analytic predictions at LL and NLL. (b) Results from Pythia.

We achieve the NLL resummation for the projected up to six-point energy correlators on tracks,
and find that in the perturbative region, the scaling behaviour is modified by the logarithmic running
of the track function moments [18]. In Fig. 1, we take the ratio of the projected energy correlator
on tracks to that on all particles, for the two- to six-point cases in 𝑒+𝑒−, as a comparison between
the all and charged particle cases. The darker bands correspond to the NLL resumed predictions,
and the lighter bands correspond to the LL resummation, while the solid lines are the Pythia data.
Due to the convention we choose to scale energy weights (𝐸/𝑄 with the particle energy 𝐸 and
the c.o.m energy 𝑄 in 𝑒+𝑒−), the 𝑁-point result (𝑁 = 2, 3, 4, 5, 6) in the plot has an overall factor
∼ 𝑇 (𝑘)𝑇 (𝑁 − 𝑘).

As shown in Fig. 1a, in the perturbative region (right, with the background color being white),
the anomalous dimensions of track functions impose a perturbatively predictable modification on
the scaling behaviour: with the track information introduced, the scaling law, ∼ 𝑥

𝛾 (𝑁+1,𝛼𝑠)
𝐿 /𝑥𝐿

for the all-particle case, is changed to ∼ 𝑥
𝛾tr (𝑁+1,𝛼𝑠)
𝐿 /𝑥𝐿 in the track case, where 𝛾tr(𝑁 + 1, 𝛼𝑠) ≈

𝛾(𝑁 +1, 𝛼𝑠) − 𝛿(𝑁 +1, 𝛼𝑠) with 𝛿(𝑁 +1, 𝛼𝑠) resulting from the effect of the 𝑁-th moments of track
function anomalous dimensions, 𝑅𝑁 . Although 𝛾tr(𝑁 + 1, 𝛼𝑠) and 𝑅𝑁 are usually not in the same
space2, naively and roughly we have 𝛿(𝑁 + 1, 𝛼𝑠) ∼ −𝑅𝑁 . Then, 𝛿(𝑁 + 1, 𝛼𝑠) is to a large extent
controlled by the twist-2 spin-𝑁+1 anomalous dimensions. Thus, 𝛾tr(𝑁 + 1, 𝛼𝑠) ⪅ 𝛾(𝑁 + 1, 𝛼𝑠),
which leads to the decreasing behaviour as 𝑥𝐿 gets larger. For the two- and three-point cases, the
curves in the perturbative region are very flat, which means that including tracks barely changes the
shapes. This results from the cancellations in nonperturbative track function moments and then in
their evolution. For the higher point cases, the incorporation of track information has larger effects.
The higher moments of track functions have faster evolution.

Fig. 1b shows the Pythia data covering the collinear limit from the perturbative region to the
free hadron region (left, dark shaded). The value of the ratio in the free hadron region is the
probability of finding two of the particles charged, which is approximately (2/3)2 ≈ 𝑇 (1)2. The

2𝑅𝑁 is in the track function moment space. See Refs. [18, 26].
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curves in the transition region (middle, shaded) connect the curves in the perturbative region to
those in the free hadron region. This explains the flat behaviour of the two-point case for the whole
range.

5. Back-to-back limit

In the back-to-back limit, we focus on the E𝑚1E𝑚2C on 𝑅 (e.g., tracks, and all particles) in 𝑒+𝑒−,
which is defined as two back-to-back particles with the energy weighting E𝑚1 and E𝑚2 respectively.
Following the factorization theorem in di-hadron production in Ref. [29], We find that the back-to-
back E𝑚1E𝑚2C factorizes into the hard function 𝐻, the back-to-back jets 𝐽’s, and the soft function
𝑆 3:

d𝜎
d𝑧

[𝑚1,𝑚2 ]
=
�̂�0

2

∫
d2 ®𝑞𝑇 𝛿

(
1 − 𝑧 −

𝑞2
𝑇

𝑄2

) ∫
d2®𝑏𝑇
(2𝜋)2 𝑒

−i ®𝑞𝑇 · ®𝑏𝑇 𝐻𝑞�̄� (𝑄, 𝜇)𝑆𝑞 (𝑏𝑇 , 𝜇, 𝜈)

× 𝐽 [𝑚1 ],𝑞
𝑅

(
𝑏𝑇 , 𝜇,

𝜈

𝑄

)
𝐽 [𝑚2 ],𝑞
𝑅

(
𝑏𝑇 , 𝜇,

𝜈

𝑄

)
, (9)

where the quark jet function on 𝑅 reads

𝐽 [𝑚],𝑞
𝑅

(
𝑏𝑇 , 𝜇,

𝜈

𝑄

)
=

∑
𝑖

∫ 1

0
d𝑥 𝑥𝑚 I𝑞𝑖

(
𝑏𝑇
𝑥
, 𝑥, 𝜇, 𝜈

)
F𝑖 (𝑚, 𝜇) , (10)

where the 𝑚-th moment of fragmention functions on 𝑅 is defined as

F𝑖 (𝑚, 𝜇) ≡
∑
𝐼 ∈𝑅

∫
d𝑧 𝑧𝑚 𝑓𝑖→𝐼 (𝑧, 𝜇) (11)

with if 𝑚 = 1

F𝑖 (1, 𝜇) = 𝑇𝑖 (1, 𝜇) . (12)

I𝑞𝑖
(
®𝑏⊥/𝑥, 𝑥, 𝜇, 𝜈

)
is the matching coefficient of transverse-momentum-dependent fragmentation

functions (TMD FFs)[30], and 𝑓𝑖→𝐼 (𝑧, 𝜇) is the collinear fragmentation function. Note that for
the all-hadron case, Eq. (12) equals one due to the momentum conservation, so the collinear
fragmentation functions do not enter in Eq. (9) with 𝑚1 = 𝑚2 = 1, which indicates that EEC is
infrared safe.

The renormalization group equations for the different pieces in the factorization formula Eq. (9)
remain the same as the all-particle EEC case. We evolve the hard, jet and soft functions via their
RGEs from their natural scales to a common scale 𝜇,

d𝜎
d𝑧

[𝑚1,𝑚2 ]
=
�̂�0

8

∫ ∞

0
d(𝑏𝑇𝑄)2𝐽0(𝑏𝑇𝑄

√
1 − 𝑧)𝐻𝑞�̄� (𝑄, 𝜇𝐻 )

× 𝐽 [𝑚1 ],𝑞
𝑅

(
𝑏𝑇 , 𝜇𝐽 ,

𝜈𝐽
𝑄

)
𝐽 [𝑚2 ],𝑞
𝑅

(
𝑏𝑇 , 𝜇𝐽 ,

𝜈𝐽
𝑄

)
𝑆𝑞 (𝑏𝑇 , 𝜇𝑆 , 𝜈𝑆)

(
𝜈𝐽
𝜈𝑆

) �̃�𝑞
𝜈 (𝑏𝑇 ,𝜇)

× exp

[∫ 𝜇

𝜇𝐻

d𝜇′

𝜇′ 𝛾
𝑞
𝐻 (𝑄, 𝜇′) + 2

∫ 𝜇

𝜇𝐽

d𝜇′

𝜇′ �̃�
𝑞
𝐽 (𝜇

′,
𝜈𝐽
𝑄

) +
∫ 𝜇

𝜇𝑆

d𝜇′

𝜇′ �̃�
𝑞
𝑆 (𝜇

′, 𝜈𝑆)
]
, (13)

3Note that for cases where 𝐽
[𝑚],𝑞
𝑅 ≠ 𝐽

[𝑚],�̄�
𝑅 , the exchange of 𝑚1 and 𝑚2 (𝑚1 ≠ 𝑚2) should be considered. But this

extension is straightforward. Here for notational simplicity, we assume 𝐽
[𝑚],𝑞
𝑅 = 𝐽

[𝑚],�̄�
𝑅 . 𝑥𝐿 is denoted by 𝑧 here.
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where we follow the notation in Ref. [12] and the canonical resummation scales read

𝜇𝐻 ∼ 𝑄, 𝜇𝐽 ∼ 𝑏0

𝑏∗𝑇 (𝑏𝑇 )
, 𝜇𝑆 ∼ 𝑏0

𝑏∗𝑇 (𝑏𝑇 )
, 𝜇0 ∼ 𝑏0

𝑏∗𝑇 (𝑏𝑇 )
, 𝜈𝐽 ∼ 𝑄, 𝜈𝑆 ∼ 𝑏0

𝑏𝑇
(14)

with 𝑏max = 1.5 GeV−1. Finally we choose 𝜇 around the hard scale 𝑄.
In Eq. (13), the jet functions contain 𝑓𝑖→𝐼 (𝑚, 𝜇𝐽 = 𝑏0/𝑏𝑇 ). In order to do the integration

over 𝑏𝑇 conveniently, we expand F𝑖 (𝑚, 𝜇𝐽 = 𝑏0/𝑏𝑇 ) around the common scale 𝜇: for NLL,
®F (𝑚, 𝜇𝐽 ) =

[
𝑎𝑠 (𝜇𝐽 )
𝑎𝑠 (𝜇)

]𝛾 (0) (𝑚+1)/𝛽0 ®F (𝑚, 𝜇) is introduced.

6. Full results of track EEC

Here we present the full distribution of track EEC, covering the aforementioned pieces of the
different phase space regions. Fig. 2 shows the two-loop prediction (NLO), the NLO combined with
the collinear NLL resummation, and the NLO combined with the back-to-back NLL′ resummation,
as well as the Pythia data. In both the collinear NLL and NLO results the uncertainty is evaluated
by varying the common renormalization scale 𝜇 by a factor of 1/2 or 2, while for the back-to-back
NLL′, we evaluate its resummation scale following Ref. [12]. The straight-line behaviour in the
extremely back-to-back region (right of the plot) tells us that the track EEC exhibits a similar
scaling (free-hadron) characteristic to that in the deep nonperturbative region of the collinear limit
(left of the plot). From Fig. 2a to Fig. 2c, as the c.o.m energy goes higher, the uncertainty bands
become narrower, and the theoretical predictions become closer to the Pythia simulation. However,
obviously the NNLL resummation is required to achieve a more precise prediction in the collinear
limit.

We leave the results with higher accuracy and futher detailed evaluation of uncertainties to a
forthcoming paper, and the E𝑚1E𝑚2C calculations to future work.
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