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1. Introduction

Over the past few decades, immense efforts have been made to calculate two-loop amplitudes for
relevant processes at the LHC [1]. To further increase the precision of collider phenomenology, the
introduction of additional kinematic or mass scales in two-loop scattering amplitudes is necessary
[2]. This prompts the development of methods that are less sensitive to the number of masses
in internal or external particles. One attractive approach is computing multi-loop amplitudes
numerically directly in momentum space, as this technique keeps the number of integrations per
loop order constant, regardless of the number of external legs or kinematic scales. However the
numerical integration of an amplitude in momentum space is not straightforward. Ultraviolet and
infrared singularities need to be removed at the local level of the integrand before the amplitude is
amenable to numerical integration.1 In these proceedings we present a framework that exploits the
factorization properties of scattering amplitudes to construct hard functions for two-loop amplitudes
locally in momentum space.

Notably, wide-angle scattering amplitudes in gauge theories factorize to all orders in perturba-
tion theory into a soft function, jet functions and a hard function [4–12].

𝑀 = Soft ·
∏
𝑖

Jet𝑖 · Hard, (1)

where all the soft divergences of 𝑀 are in the soft function, all the collinear divergences are in
the jet functions, and the hard function is infrared finite. Note that the soft and jet functions are
universal functions, while the remaining process dependence is stored in the hard function, which
describes interactions at short distances. With this construction, one can imagine assembling the
infrared singular parts of an amplitude with any number of colorless final states from simpler,
already known processes, such as form factors. The remainder, which is locally finite, can then be
integrated numerically. Namely,

𝑀 =

∫
d[𝑘]M =

∫
d[𝑘] S ·

∏
𝑖

J𝑖︸     ︷︷     ︸
≡F, form factor

∫
d[𝑘] M · S−1 ·

∏
𝑖

J −1
𝑖︸                  ︷︷                  ︸

≡H, IR-finite

(2)

where the script letters denote the integrands and
∫

d[𝑘] denotes the integration over all loop
momenta. For hadron collider processes with colorless final states the soft function is not a matrix
and we can combine it with the jet function into a form factor F . Order by order in perturbation
theory the hard function at the integrand level therefore is

H (0) = M (0) ,

H (1) = M (1) − F (1)M (0) ,

H (2) = M (2) − F (1)H (1) − F (2)M (0) . (3)

To construct a fully finite hard function at the local level further modifications are necessary.
The reason for this is that factorization properties are symmetric expressions (e.g. under gauge

1Note that additional treatment of threshold singularities are further required to successfully integrate directly in
momentum space. For ongoing efforts on this topic, see for example Matilde Vicini’s talk [3].
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symmetries of the theory) and such symmetries are not always manifest at the integrand level. The
full infrared factorization in momentum space has so far been developed for two collections of
processes at two loops, namely off-shell photon production in electron positron annihilation [13]
and electroweak production in quark anti-quark annihilation [14].

In these proceedings we will focus on the two-loop amplitudes for gluon fusion to colorless,
electroweak final states, via a heavy quark loop which is based on ref. [15]. In particular we will
discuss the two-loop amplitude of single Higgs production for a more pedagogical introduction to
this topic. This is a next-to-leading order process. The leading order is a heavy quark loop one-loop
amplitude and does not entail any infrared singularities. The two-loop hard function amenable to
numerical integration takes the following form:

H (2) ,𝑅
𝑔𝑔→𝐻

(𝑘, 𝑙) = M (2) ,𝑅
𝑔𝑔→𝐻

(𝑘, 𝑙) − F (1) ,𝑅
scalar (𝑘) M (1) ,𝑅

𝑔𝑔→𝐻
(𝑙) − ΔM (2) ,𝑅

𝑔𝑔→𝐻
(𝑘, 𝑙) , (4)

where the superscript 𝑅 indicates the subtraction of local ultraviolet counterterms. The superscript
𝑚 = 1, 2 indicates the loop order of the amplitude or the counterterms, and the subscript 𝑔𝑔 → 𝐻

indicates the process. All of the infrared singularities are contained in a one-loop “scalar” form
factor independent of the incoming gluon spin states. The terminology of “scalar ” is discussed in
section 2.1. The momenta 𝑘 and 𝑙 are the loop momenta. It is important to mention that eq. (4) is
valid for an arbitrary number of electroweak final states [15]. Note that an additional counterterm
ΔM (2) ,𝑅

𝑔𝑔→𝐻
(𝑘, 𝑙) compared to eq. (3) is necessary to make the infrared factorization manifestly local

in loop momentum space. This counterterm does not change the value of the integrated amplitude
since it integrates to zero ∫

d𝑙𝐷ΔM (2) ,𝑅
𝑔𝑔→𝐻

(𝑘, 𝑙) = 0 . (5)

It does, however, ensure the cancellation of loop momentum mismatches in one-loop hard subdi-
agrams that occur in collinear limits, thus allowing Ward identities to be implemented locally. In
section 2 we introduce a decomposition of the triple-gluon vertex named “scalar” decomposition.
The decomposition allows for a natural classification of the infrared singular diagrams of the am-
plitude into two distinct classes, with respect to their behavior in the infrared limits. Additionally it
allows to introduce appropriate gluon momentum labels necessary for the factorization to emerge
locally. In section 3, the factorization of the first class of diagrams locally in momentum space is
demonstrated via the use of Ward identities. The remaining class of diagrams, which do not directly
contribute to factorization, is discussed in section 4. These diagrams are finite after integration, but
have local infrared singularities. For numerical integration, we will introduce additional countert-
erms of the form outlined in eq. (5). Finally, we conclude the paper and discuss some further steps
towards a general framework in section 5.

2. General setup

To achieve the local factorization in eq. (4), the infrared behavior of the amplitude needs to be
studied. Below the infrared singular Feynman diagrams contributing to the two-loop amplitude for
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single Higgs production in gluon fusion are listed

M (2)
IR, 𝑔𝑔→𝐻

=

p2

p1

+
p2

p1

+
p2

p1

+
p2

p1

+
p2

p1

+
p2

p1

+
p2

p1

+
p2

p1

.

Each of these singular diagrams has a triple-gluon vertex, which is the origin of infrared singularities
(collinear and soft). Each term in the triple-gluon vertex exhibits a different behavior in the collinear
limits. Moreover, they play different roles in the cancellations between diagrams in the collinear
limits, which eventually lead to the factorization of the collinear singularities. To systematically
study infrared singularities in collinear and soft limits, it is useful to decompose the triple gluon
vertex.

2.1 “Scalar” decomposition

Noticing that each term in the triple-gluon vertex corresponds to the tree-level Feynman rule for
the interaction of color-octet “scalars” and a gluon times the metric, 𝜂𝛼𝛽, we graphically decompose
the triple gluon vertex as

α, a β, b

γ, c

k1 k2

k3 = −𝑔𝑠 𝑓𝑎𝑏𝑐 (𝑘1 − 𝑘2)𝛾𝜂𝛼𝛽 − 𝑔𝑠 𝑓𝑏𝑐𝑎 (𝑘2 − 𝑘3)𝛼𝜂𝛽𝛾 − 𝑔𝑠 𝑓𝑐𝑎𝑏 (𝑘3 − 𝑘1)𝛽𝜂𝛾𝛼

=
α, a β, b

γ, c

k1 k2

k3 +
α, a β, b

γ, c

k1 k2

k3 +
α, a β, b

γ, c

k1 k2

k3 , (6)

where each term on the right-hand side of the first line corresponds, in order, to each term on the
second line. This decomposition is denoted as a “scalar” decomposition. As an example, the
“scalar” decomposition of one infrared singular diagram is given

p2

p1

k
=

p2

p1

k
+

p2

p1

k + p1
+

p2

p1

k
.

(7)

It is important to note that the dashed lines still describe gluons and only graphically indicate which
triple-gluon vertex term is being considered. Therefore, a dashed propagator is a gluon propagator,
a “scalar”-quark vertex should be read with the same Feynman rules as a gluon-quark vertex and
an external “scalar” remains an external gluon. The last diagram in this decomposition is infrared
finite, due to the transversality of the polarization vector. Applying the Feynman rules, we find that
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the diagram is proportional to 𝜖 (𝑝1) · (2𝑘 + 𝑝1), which is zero in the limit where 𝑘 ∥ 𝑝1. We will
omit this diagram from the collection of IR singular diagrams from now on.

Analyzing the infrared singularities of the amplitude in detail, we find that for infrared fac-
torization to be manifest at the integrand level, the gluons must always have the same momentum
label. The original momentum flow of the diagram displayed in eq. (7) therefore does not lead to
local factorization. The “scalar” decomposition is particularly useful as it allows for the imposition
of a different momentum flow for each decomposed diagram.

2.2 Classification

The “scalar” decomposition not only allows to implement the required gluon momentum labels,
but also to classify the diagrams with respect to their behavior in the collinear limits. As already
mentioned above, diagrams in which the incoming gluon splits into two “scalar” lines are infrared
finite due to the transversality of the polarization vectors. The remaining infrared diagrams separate
into two distinct groups. For each diagram in the first group, the collinear singularities factorize
locally in the sum. Therefore, we call them factorizable diagrams and denote them as M (2) , fact

IR, 𝑔𝑔→𝐻
:

M (2) , fact
IR, 𝑔𝑔→𝐻

=

p2

p1

k +
p2

p1

k
+

p2

p1

k

+
p2

p1

k
+

p2

p1

k +
p2

p1

k

+
p2

p1

k
+ other charge flow . (8)

The second set of diagrams we call shift-integrable diagrams, denoted by M (2) , shift
IR, 𝑔𝑔→𝐻

:

M (2) , shift
IR, 𝑔𝑔→𝐻

=

p2

p1

k +
p2

p1

k +
p2

p1

k

+
p2

p1

k +
p2

p1

k +
p2

p1

k

+
p2

p1

k + other charge flow . (9)

In both classes, only one charge flow of the heavy quark loop is shown, and all gluons are labeled 𝑘

flowing away from 𝑝2 and/or into 𝑝1. Note that a “scalar”-gluon propagator present in the diagrams
above has the same Feynman rule as a gluon propagator, but the split allows to indicate which term
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of the triple-gluon vertex is studied in both triple-gluon vertices. The shift-integrable diagrams
exhibit soft and collinear singularities at the integrand level. However, after integration the sum of
these diagrams is infrared finite due to the Ward identity. Despite this, we must eliminate the local
singularities using counterterms that integrate to zero to make the integrand suitable for numerical
integration. In the next two sections we discuss each class of diagrams separately, starting with the
factorizable diagrams in section 3, followed by the shift-integrable diagrams in section 4.

3. Factorizable diagrams

In this section we discuss the infrared factorization of the factorizable diagrams shown in
eq. (8). We focus on the collinear limit where the loop momentum 𝑘 becomes parallel to the
incoming momentum 𝑝1. Only the first four diagrams in eq. (8) are infrared singular in this limit.
Note that each of these diagrams contains the same “scalar”-gluon vertex, such that in the collinear
limit the sum behaves as follows

Vα

p1

p1 + k

k

=
(2𝑝1 + 𝑘)𝛼
𝑘2(𝑘 + 𝑝1)2 V𝛼 𝑘=−𝑥𝑝1−−−−−−→ (2 − 𝑥)

𝑥

(−𝑘)𝛼
𝑘2(𝑘 + 𝑝1)2 V𝛼 = Vα

p1

p1 + k

k

.

(10)

We state one part of the “scalar”-gluon vertex and the two singular propagator denominators
specifically and all the remaining terms of the diagrams are summarized in V𝛼. We find that in
the limit the gluon 𝑘 carries a longitudinal polarization (−𝑘)𝛼 into the rest of the diagram. We
graphically represent the longitudinal polarization in the limit with an arrow as shown above.

3.1 Ward identities

The longitudinal polarization of the gluon in a collinear limit prompts a treatment via Ward
identities such as

c

l l + k

k
=

c

l

k +

c

l + k

k
. (11)

The dot implies the truncation of the gluon (no propagator), while the gray arrow indicates the
longitudinal polarization, in this case 𝑘𝛼. This is a tree-level Ward identity for the longitudinal
gluon hitting a quark line. The vertices are defined as

c

≡ 𝑔𝑠𝑇𝑐 ,

c

≡ −𝑔𝑠𝑇𝑐 , (12)

where a cross on a leg symbolizes the cancellation of a propagator. The double lines represent the
insertion of the momentum 𝑘 and specify the attachment of the color charge of the gluon. A similar
Ward identity holds for the gluon hitting a “scalar” line. The Ward identities are essential elements
of local factorization, as we will show next.

6
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3.2 Local factorization

We will now study the factorization of the factorizable diagrams at the integrand level through
Ward identity cancellations in the collinear limit 𝑘 ∥ 𝑝1. The local factorization requires not only a
careful assignment of the gluon loop momentum through the “scalar” decomposition as discussed
above, but also needs a careful assignment of the loop momentum in the heavy quark loop. As an
example, we consider the third and fourth diagram in eq. (8) in the collinear limit 𝑘 ∥ 𝑝1:

p2

p1 l + k

k

+

p2

p1
l + k

k

(13)

=

p2

p1 l + k

k

+
p2

p1 l + k

k

+
p2

p1 l + k

k︸                                                       ︷︷                                                       ︸
=0

+
p2

p1 l

k
.

The colored quark propagators on the first line indicate that these propagators require the same
momentum labeling in both diagrams. Using the Ward identity in eq. (11), we note that the second
and third diagrams on the second line are identical, except for the different sign of the vertex where
the gluon attaches next to the Higgs boson via a double line defined in eq. (12). Thus, the two
expressions cancel each other. Similarly, intermediate terms between the remaining diagrams in
M (2) , fact

IR, 𝑔𝑔→𝐻
cancel in the collinear limit via the Ward identity in eq. (11) or the Ward identity

arising from a longitudinally polarized gluon hitting a “scalar" line. This results in two external
leg corrections to the diagram, thereby achieving factorization at the integrand level in this limit.
Diagrammatically, this is represented as follows:

lim
𝑘 ∥ 𝑝1

M (2) , fact
IR, 𝑔𝑔→𝐻

=

p2

p1 l

k
+

p2

p1 l + k

k + other charge flow . (14)

A careful study of the color factors allows to write the factorizable diagrams in the limit as

lim
𝑘 ∥ 𝑝1

M (2) , fact
IR, 𝑔𝑔→𝐻

= − 𝑖 𝑔2
𝑠

𝐶𝐴

2
1

𝑘2(𝑘 + 𝑝1)2
(𝑘 + 2𝑝1) · 𝑝2

𝑘 · 𝑝2

(
M (1)

𝑔𝑔→𝐻
(𝑙) +M (1)

𝑔𝑔→𝐻
(𝑙 + 𝑘)

)
, (15)

with the full one-loop amplitude M (1)
𝑔𝑔→𝐻

, i.e. the heavy quark loop, with both charge flows.
The finite one-loop amplitudes are averaged over two loop momentum flows, which are shifted by
𝑙 → 𝑙 + 𝑘 with respect to each other. In the other collinear limit 𝑘 ∥ 𝑝2 the factorization occurs
analogously. Lastly, the singular behavior in the soft limit, where 𝑘 ∼ 0, originates entirely from
the first diagram in eq. (8) (and its other charge flow) and is equal to the soft limit of eq. (15).

3.3 Form factor and shift counterterms

Motivated by the fact that the factorized collinear singularity of eq. (15) is also present in a
gauge theory of scalars, we use an amplitude for a simple 2 → 1 scalar fusion process as an infrared

7
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counterterm. It contains the same soft and collinear singularities as the diagrams in eq. (8), such
that the local hard function can be written as

H (2) ,fact
𝑔𝑔→𝐻,IR(𝑘, 𝑙) = M (2) ,fact

𝑔𝑔→𝐻,IR(𝑘, 𝑙) − F (1)
scalar(𝑘) ×

1
2

(
M (1)

𝑔𝑔→𝐻
(𝑙) +M (1)

𝑔𝑔→𝐻
(𝑙 + 𝑘)

)
. (16)

The scalar form factor is defined by

F (1)
scalar(𝑘) 𝛿𝑎𝑏 = −𝑖 𝑔2

𝑠 𝐶𝐴

(𝑘 − 2𝑝2) · (𝑘 + 2𝑝1)
𝑘2 (𝑘 + 𝑝1)2 (𝑘 − 𝑝2)2 𝛿𝑎𝑏 =

p1

p2

a

b

c

d

gk , (17)

where the color indices are included and the dots on the external legs imply that the polarization
vectors are omitted. In the collinear limit 𝑘 ∥ 𝑝1 the second term on the right hand side of eq. (16)
exactly matches the expression in eq. (15), such that when it is subtracted from the factorizable
diagrams, the collinear singularity is removed.

Eq. (16) takes the form of eq. (4) if the additional counterterm ΔM (2)
𝑔𝑔→𝐻

(𝑘, 𝑙) in eq. (4) is

ΔM (2) , fact
𝑔𝑔→𝐻,IR(𝑘, 𝑙) = F (1)

scalar(𝑘) ×
1
2

(
M (1)

𝑔𝑔→𝐻
(𝑙 + 𝑘) −M (1)

𝑔𝑔→𝐻
(𝑙)

)
, (18)

where the superscript “fact” indicates that it is a counterterm for the factorizable diagrams. This
is a difference of the form factor times the one-loop amplitude at two different values of its loop
momentum. This difference integrates to zero and is called a shift counterterm. This concludes the
discussion of the factorizable diagrams for which we demonstrated the local factorization as stated
in eq. (4).

4. Shift-integrable diagrams

The shift-integrable diagrams given in eq. (9) are the remaining infrared singular diagrams
resulting from the “scalar” decomposition. These diagrams are infrared finite after integration,
because their infrared singularities cancel due to the QED Ward identity. However, to achieve local
finiteness, we still need to subtract additional counterterms that vanish after integration, which we
shall discuss in this section.

As a first step all soft singular terms can be removed by a counterterm that integrates to zero

Δ𝑠M (2) , shift
𝑔𝑔→𝐻,IR = 𝑖 𝑔2

𝑠 𝐶𝐴

(
𝑘𝛼

1 𝑢
𝛽

1 + 𝑢𝛼
2 𝑘

𝛽

2 + 𝑘𝛼
1 𝑘

𝛽

2 𝜖1 · 𝜖2

) M̃ (1)
𝑔𝑔→𝐻,𝛼𝛽

(𝑘1, 𝑘2, 𝑙)
𝑘2𝑘2

1𝑘
2
2

. (19)

We define 𝑘1 ≡ 𝑘 + 𝑝1 and 𝑘2 ≡ 𝑝2 − 𝑘 for legibility and denote the one-loop amplitude with two
incoming gluons of momenta 𝑘1 and 𝑘2 and removed polarization vectors as M̃ (1)

𝑔𝑔→𝐻,𝛼𝛽
(𝑘1, 𝑘2, 𝑙).

The vectors 𝑢𝛼
1 and 𝑢

𝛽

2 depend on the loop momentum 𝑘 , the external momenta 𝑝1, 𝑝2 and the
polarization vectors 𝜖1, 𝜖2 and are not further relevant for the discussion. Note that for each term in
the brackets, the counterterm is proportional to a longitudinally polarized gluon (with momentum 𝑘1

8
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or 𝑘2) entering the heavy quark loop, i.e. the one-loop amplitude, everywhere. Since all diagrams
have the same color factor, the QED Ward identity holds. For example,

𝑘𝛼
1 M̃

(1)
𝑔𝑔→𝐻,𝛼𝛽

(𝑘1, 𝑘2, 𝑙)

= β

k2

k1
l

l + q

+ β

k2

k1

l

= β

k2 k1

l

+ β

k2

k1
l + k1

. (20)

Applying the rules in eq. (12), we conclude that this is a difference of the same diagram with
two different values of the loop momentum. Therefore, it vanishes after integration over the loop
momentum 𝑙. Analogously, this also holds when the other gluon is longitudinally polarized∫

d𝐷𝑙 𝑘𝛼
1 M̃

(1)
𝑔𝑔→𝐻,𝛼𝛽

(𝑘1, 𝑘2, 𝑙) =
∫

d𝐷𝑙 𝑘𝛼
2 M̃

(1)
𝑔𝑔→𝐻,𝛼𝛽

(𝑘1, 𝑘2, 𝑙) = 0 , (21)

such that the counterterm Δ𝑠M (2) , shift
𝑔𝑔→𝐻,IR can be removed from the amplitude without changing its

integrated value. We can now examine the remaining collinear limits of the modified shift-integrable
diagrams. In the collinear limit 𝑘 ∥ 𝑝1 we obtain

lim
𝑘=−𝑥𝑝1

(
M (2) , shift

𝑔𝑔→𝐻, IR − Δ𝑠M (2) , shift
𝑔𝑔→𝐻,IR

)
= 4 𝑖 𝑔𝑠 𝐶𝐴

𝑥

𝑥 − 1
𝑘𝛼

1 𝑣
𝛽

1 M̃ (1)
𝑔𝑔→𝐻,𝛼𝛽

(𝑘1, 𝑘2, 𝑙)
𝑘2𝑘2

1𝑘
2
2

, (22)

where 𝑣𝛽1 depends on the loop momentum 𝑘 , the external momentum 𝑝2 and the polarization vectors
and is not further relevant for the discussion. The modified shift-integrable diagrams become
proportional to a longitudinally polarized gluon 𝑘1 entering the heavy quark loop everywhere.
Again the QED Ward identity in eq. (20) applies, resulting in a difference of the same diagram with
two different values of the loop momentum. Hence, this is a non-local cancellation in the collinear
limit and only vanishes after the integration over 𝑙. One has to remove this difference to be able to
integrate the hard function numerically. This can be done by subtracting a counterterm of the form

Δ1M (2) , shift
𝑔𝑔→𝐻,IR = 𝑖 𝑔𝑠 𝐶𝐴

𝑘𝛼
1 𝑣

𝛽

1 M̃ (1)
𝑔𝑔→𝐻,𝛼𝛽

(𝑘1, 𝑘2, 𝑙)
𝑘2𝑘2

1

2𝑝1 · (2𝜉 − 𝑘1)
𝑝1 · 𝑝2 (𝑘2

1 − 2𝜉 · 𝑘1)
. (23)

Note that the original propagator 𝑘2
2 in the diagram and additional 𝑥 terms from the limit 𝑘 = −𝑥𝑝1

are replaced by the last factor in eq. (23), where 𝜉 is an auxiliary vector satisfying 𝑝1 ·𝜉, 𝜉2 ≠ 0. This
guarantees that the counterterm captures the correct behavior in the collinear limit 𝑘 ∥ 𝑝1, while
ensuring the finiteness in the other collinear limit 𝑘 ∥ 𝑝2. This counterterm integrates to zero due
to the Ward identity in eq. (21) and locally removes the collinear singularity 𝑘 ∥ 𝑝1 of the modified
shift integrable diagrams. A similar counterterm can be constructed for the other collinear limit
Δ2M (2) , shift

𝑔𝑔→𝐻,IR. These two counterterms, which take care of the local collinear singularities, can be
recast diagrammatically as shift counterterms if a certain choice of the quark loop momentum label
𝑙 is made. This is explained in more detail in ref. [15].
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5. Conclusion and next steps

In these proceedings we presented a framework for the local subtraction of infrared singularities
in the two-loop amplitude for gluon-fusion Higgs production. With a “scalar” decomposition of the
triple-gluon vertex, one classifies the infrared singular diagrams into two groups, the factorizable
diagrams and the shift-integrable diagrams. In addition, the decomposition allows the introduction
of a specific loop momentum routing for the gluons. This ensures the local factorization of
the factorizable diagrams in the infrared limits via cancellations by Ward identities. The local
singularities of the shift-integrable diagrams are removed with local counterterms which leave the
integrated value of the amplitude invariant. With these constructions, one can remove all infrared
singularities locally with one form factor counterterm times the one-loop amplitude and several
shift counterterms, as shown in eq. (4). The sum of all counterterms, which vanish after integration,
is

ΔM (2)
𝑔𝑔→𝐻

(𝑘, 𝑙) = ΔM (2) , fact
𝑔𝑔→𝐻,IR(𝑘, 𝑙) + Δ𝑠M (2) , shift

𝑔𝑔→𝐻,IR + Δ1M (2) , shift
𝑔𝑔→𝐻,IR + Δ2M (2) , shift

𝑔𝑔→𝐻,IR . (24)

This procedure can be generalized to an arbitrary number of external electroweak bosons in gluon
fusion, as described in more detail in ref. [15]. Note that after this procedure, ultraviolet singularities
of the the amplitude need to be regularized by additional local counterterms, which can be achieved
by Taylor expanding the diagram in the specific limits and truncating at the necessary order with
a mass regulator (see more details in ref. [15]). The fully finite amplitude is then suitable for
numerical integration. The counterterms eventually must be integrated analytically and added back
to the amplitude.

This has been a first exploration of constructing a locally finite two-loop amplitude with in-
coming gluons. In view of a generalization, one needs to study NNLO processes with initial state
gluons that introduce double infrared singularities. Additional issues arise for these amplitudes
due to vertex and self-energy corrections next to the external legs. The self-energy corrections
introduce power-like collinear singularities, which need to be reduced to logarithmic singularities
such that we can rely on a leading-power approximation to write down a factorized counterterm.
Vertex corrections next to an initial state produce the so-called loop polarizations. Namely, the
loop momentum of the correction does not necessarily point in the same direction as the external
momentum, which could damage the local factorization in the collinear limits. Local subtractions
resolving both problems have to be introduced without changing the integrated value of the full
amplitude. These issues were previously solved for electron positron and quark anti-quark annihi-
lation in refs. [13, 14]. For initial state gluons, new loop polarization structures appear, requiring
the development of novel methods to systematically tackle these issues. These extensions to the
framework of local factorization in momentum space are part of ongoing research.
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