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The three-dimensional spatial structure of hadrons is encoded in their form factors. Via appropriate
Fourier transform, the latter describe how charge, energy, linear and angular momentum, but also
pressure are distributed inside these systems. Electromagnetic form factors of the nucleon have
been measured for a long time, but it is only recently that some gravitational form factors have been
extracted from experimental data, creating a great deal of enthusiasm in the hadronic community.
Here we summarize some of the recent developments on the interpretation of these form factors,
and provide a quick overview of what we can learn about the nucleon mass, spin and internal
pressure.
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1. Introduction

Understanding the inner workings of hadrons requires multidimensional mapping of the dis-
tribution of their constituents [1–3]. Feynman’s parton picture has now been promoted to a 5D
representation based on the notion of light-front Wigner (or phase-space) distribution [4], which
gives the quasi-probability to find a quark or a gluon with a given light-front three-momentum
( ®𝑘⊥, 𝑥𝑃+) at the transverse position ®𝑏⊥. Integrating out some of these variables, one obtains various
lower-dimensional distributions which can be probed via different (semi-)inclusive and exclusive
processes [5].

In this contribution, we will focus on the spatial structure as probed by exclusive scattering
experiments. The response of hadrons to electromagnetic probes has been measured with extreme
precision over the past decades, allowing us to gain insight not only into the electromagnetic
structure [6, 7], but also into the mechanical structure [8] of hadrons. More precisely, elastic
lepton-hadron scattering gives direct access to the electromagnetic current ⟨𝑝′, 𝑠′ | 𝑗 𝜇 |𝑝, 𝑠⟩, where
𝑝 is the four-momentum and 𝑠 is the polarization of the hadron, whereas deeply virtual Compton
scattering provides indirect information on the energy-momentum tensor ⟨𝑝′, 𝑠′ |𝑇 𝜇𝜈 |𝑝, 𝑠⟩.

Thanks to Poincaré symmetry these matrix elements can be described by a limited number
of Lorentz-invariant functions of the four-momentum transfer Δ = 𝑝′ − 𝑝 called form factors
(FFs). Their Fourier transform in the Breit frame (BF) are usually interpreted as static 3D spatial
distributions [9–11]. Since relativistic recoil corrections hinder their interpretation as probabilistic
densities [12–14], alternative 2D distributions on the light front (LF) have been proposed [15–17].
While the latter admit a strict probabilistic interpretation, they show features that are at odds with
the expected picture of hadrons at rest [18, 19].

To clarify the situation, the concept of relativistic spatial distribution has recently been revisited
by a number of authors, see e.g. [20–27]. The phase-space approach [28–30] differs from these
attempts by relaxing the requirement of strict probabilistic interpretation to a quasi-probabilistic
one. In doing so, it is possible to define relativistic spatial distributions which depend on the hadron
average momentum. In this picture, BF and LF distributions appear as two particular limits, and
the LF distortions are understood as purely kinematical artifacts associated with spin.

2. Phase-space formalism

The LF formalism is closely related to the standard description in the infinite-momentum frame
(IMF) [31], i.e. the frame where the target travels at nearly the speed of light. From a phase-space
perspective, elastic frame (EF) distributions [28, 29, 32] provide a natural interpolation between
slow- and fast-moving targets.

The expectation value of an operator 𝑂 in a physical state |𝜓⟩ can be written as

⟨𝜓 |𝑂 |𝜓⟩ =
∫

d3𝑃

(2𝜋)3 d3𝑅 𝜌𝜓 ( ®𝑅, ®𝑃) ⟨𝑂⟩ ®𝑅, ®𝑃, (1)

where

𝜌𝜓 ( ®𝑅, ®𝑃) =
∫

d3𝑞

(2𝜋)3 𝑒−𝑖 ®𝑞 ·
®𝑅 �̃�∗( ®𝑃 + ®𝑞

2 )�̃�( ®𝑃 − ®𝑞
2 ) (2)
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is the Wigner distribution [33] and �̃�( ®𝑝) = ⟨𝑝 |𝜓⟩/2
√︁
𝑝0 is the wave packet of the system. The

amplitude

⟨𝑂⟩ ®𝑅, ®𝑃 =

∫
d3Δ

(2𝜋)3 𝑒𝑖
®Δ· ®𝑅 ⟨𝑝′ |𝑂 |𝑝⟩

2
√︁
𝑝0𝑝′0

(3)

can then be interpreted as the expectation value of 𝑂 for a system localized in phase space with
average momentum ®𝑃 = ( ®𝑝′ + ®𝑝)/2 and average position ®𝑅.

To obtain a static distribution in the case of a spacetime-dependent operator 𝑂 (𝑥), we need to
pick up a frame where the energy transfer to the system Δ0 = ®𝑃 · ®Δ/𝑃0 vanishes. This is satisfied,
e.g., in the BF defined by the condition | ®𝑃 | = 0. In the case of a moving target, we can choose
for convenience the 𝑧-axis along ®𝑃. The elastic condition Δ0 = 0 is then satisfied if we project the
distribution onto the transverse plane

𝑂EF(®𝑏⊥; 𝑃𝑧) =
∫

d𝑧 ⟨𝑂⟩ ®𝑅,𝑃𝑧 ®𝑒𝑧 (𝑥) =
∫

d2Δ⊥
(2𝜋)2 𝑒−𝑖

®Δ⊥ · ®𝑏⊥ ⟨𝑝′ |𝑂 (0) |𝑝⟩
2𝑃0

����
Δ𝑧= | ®𝑃⊥ |=0

. (4)

Because of translation symmetry, this EF distribution depends only on the relative transverse
position ®𝑏⊥ = ®𝑥⊥ − ®𝑅⊥ besides 𝑃𝑧 .

For a relativistic system, the 𝑃𝑧-dependence cannot in general be factored out. We however
expect that [34, 35]

⟨𝑝′, 𝑠′ |𝑂𝜇1 · · ·𝜇𝑛 (0) |𝑝, 𝑠⟩ =∑︁
𝑠′
𝐵
,𝑠𝐵

𝐷
∗( 𝑗 )
𝑠′
𝐵
𝑠′ (𝑝

′
𝐵,Λ)𝐷

( 𝑗 )
𝑠𝐵𝑠 (𝑝𝐵,Λ) Λ

𝜇1
𝜈1 · · ·Λ

𝜇𝑛
𝜈𝑛 ⟨𝑝

′
𝐵, 𝑠

′
𝐵 |𝑂𝜈1 · · ·𝜈𝑛 (0) |𝑝𝐵, 𝑠𝐵⟩, (5)

where ⟨𝑝′
𝐵
, 𝑠′

𝐵
|𝑂𝜈1 · · ·𝜈𝑛 (0) |𝑝𝐵, 𝑠𝐵⟩ is the BF matrix element and Λ

𝜇
𝜈 is the matrix that implements

the Lorentz boost from the BF to a generic frame. For a target with spin 𝑗 , the Wigner spin rotation
matrix 𝐷

( 𝑗 )
𝑠𝐵𝑠 (𝑝𝐵,Λ) plays a key role for understanding the aforementioned strange features seen

in the LF spatial distributions in terms of distortions induced by the boost [30, 36–38]. We will
restrict the discussion to the case of spin-1/2 targets in the following.

3. Electromagnetic current

The 3D BF distributions of electric charge and current are defined in the phase-space formalism
as

𝐽
𝜇

𝐵
(®𝑟) = ⟨ 𝑗 𝜇⟩ ®𝑅,®0(®𝑥) =

∫
d3Δ

(2𝜋)3 𝑒−𝑖
®Δ· ®𝑟 ⟨𝑝′

𝐵
, 𝑠′

𝐵
| 𝑗 𝜇 (0) |𝑝𝐵, 𝑠𝐵⟩

2𝑃0
𝐵

(6)

with 𝑝
𝜇

𝐵
= (𝑃0

𝐵
,−®Δ/2) and 𝑝

′𝜇
𝐵

= (𝑃0
𝐵
, ®Δ/2) the initial and final BF four-momenta, and ®𝑟 =

®𝑥 − ®𝑅 the position relative to the center of the system. They differ from the conventional Sachs
distributions [9, 10] by the normalization factor 2𝑃0

𝐵
instead of 2𝑀 in the denominator. In a similar

way, the corresponding 2D EF distributions are given by

𝐽
𝜇

EF(®𝑏⊥; 𝑃𝑧) =
∫

d𝑧 ⟨ 𝑗 𝜇⟩ ®𝑅,𝑃𝑧 ®𝑒𝑧 (®𝑥) =
∫

d2Δ⊥
(2𝜋)2 𝑒−𝑖

®Δ⊥ · ®𝑏⊥ ⟨𝑝′, 𝑠′ | 𝑗 𝜇 (0) |𝑝, 𝑠⟩
2𝑃0

����
Δ𝑧= | ®𝑃⊥ |=0

. (7)

They reduce in the limit 𝑃𝑧 → 0 to the projection of the BF distributions onto the transverse plane
𝐽
𝜇

EF(®𝑏⊥; 0) =
∫

d𝑧 𝐽𝜇
𝐵
(®𝑟). As expected, the total electric charge Q =

∫
d2𝑏⊥ 𝐽0

EF(®𝑏⊥; 𝑃𝑧)
��
𝑠′=𝑠 =

3
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⟨𝑝, 𝑠 | 𝑗0(0) |𝑝, 𝑠⟩/(2𝑝0) is independent of 𝑃𝑧 , which confirms that the momentum-space amplitudes
are correctly normalized.

The matrix elements of the electromagnetic current are traditionally parametrized in terms of
the so-called Dirac and Pauli FFs

⟨𝑝′, 𝑠′ | 𝑗 𝜇 (0) |𝑝, 𝑠⟩ = 𝑒 𝑢(𝑝′, 𝑠′)
[
𝛾𝜇 𝐹1(𝑄2) + 𝑖𝜎𝜇𝜈Δ𝜈

2𝑀
𝐹2(𝑄2)

]
𝑢(𝑝, 𝑠), (8)

where 𝑄2 = −Δ2. One of the appealing features of the BF is that the spin structure of the matrix
elements is the same as in the non-relativistic theory [9, 10, 12]. One finds that

⟨𝑝′𝐵, 𝑠′𝐵 | 𝑗0(0) |𝑝𝐵, 𝑠𝐵⟩ = 𝑒 2𝑀 𝛿𝑠′
𝐵
𝑠𝐵 𝐺𝐸 (𝑄2),

⟨𝑝′𝐵, 𝑠′𝐵 | ®𝑗 (0) |𝑝𝐵, 𝑠𝐵⟩ = 𝑒 (®𝜎𝑠′
𝐵
𝑠𝐵 × 𝑖®Δ)𝐺𝑀 (𝑄2),

(9)

where ®𝜎 are the three Pauli matrices. The combination 𝐺𝐸 = 𝐹1 − 𝜏𝐹2 with 𝜏 = 𝑄2/(4𝑀2) is
called the electric Sachs FF, and 𝐺𝑀 = 𝐹1 + 𝐹2 is called the magnetic Sachs FF.

The spin structure is more complicated in the EF [21, 30, 37]

⟨𝑝′, 𝑠′ | 𝑗0(0) |𝑝, 𝑠⟩
��
EF = 𝑒 2𝑀 𝛾

[ (
𝛿𝑠′𝑠 cos 𝜃 + (®𝜎𝑠′𝑠 × 𝑖®Δ⊥)𝑧

| ®Δ⊥ |
sin 𝜃

)
𝐺𝐸 (𝑄2)

+ 𝛽

(
−𝛿𝑠′𝑠 sin 𝜃 + (®𝜎𝑠′𝑠 × 𝑖®Δ⊥)𝑧

| ®Δ⊥ |
cos 𝜃

)
√
𝜏 𝐺𝑀 (𝑄2)

]
,

⟨𝑝′, 𝑠′ | 𝑗3(0) |𝑝, 𝑠⟩
��
EF = 𝑒 2𝑀 𝛾

[
𝛽

(
𝛿𝑠′𝑠 cos 𝜃 + (®𝜎𝑠′𝑠 × 𝑖®Δ⊥)𝑧

| ®Δ⊥ |
sin 𝜃

)
𝐺𝐸 (𝑄2)

+
(
−𝛿𝑠′𝑠 sin 𝜃 + (®𝜎𝑠′𝑠 × 𝑖®Δ⊥)𝑧

| ®Δ⊥ |
cos 𝜃

)
√
𝜏 𝐺𝑀 (𝑄2)

]
,

⟨𝑝′, 𝑠′ | ®𝑗⊥(0) |𝑝, 𝑠⟩
��
EF = 𝑒 (𝜎𝑧)𝑠′𝑠 ( ®𝑒𝑧 × 𝑖®Δ⊥)𝐺𝑀 (𝑄2),

(10)

as a result of the Wigner rotation in (5). The Lorentz boost parameters are given by 𝛾 = 𝑃0/𝑃0
𝐵

and
𝛽 = 𝑃𝑧/𝑃0, and the Wigner rotation angle 𝜃 satisfies

cos 𝜃 =
𝑃0 + 𝑀 (1 + 𝜏)
(𝑃0 + 𝑀)

√
1 + 𝜏

, sin 𝜃 = −
√
𝜏𝑃𝑧

(𝑃0 + 𝑀)
√

1 + 𝜏
. (11)

In the limit 𝑃𝑧 → 0 one recovers (9) with the restriction Δ𝑧 = 0, while in the IMF limit 𝑃𝑧 → ∞
one finds using the LF components 𝑎± = (𝑎0 ± 𝑎3)/

√
2

⟨𝑝′, 𝑠′ | 𝑗+(0) |𝑝, 𝑠⟩
��
IMF = 𝑒 2𝑃+

[
𝛿𝑠′𝑠 𝐹1(𝑄2) + (®𝜎𝑠′𝑠 × 𝑖®Δ)𝑧

2𝑀
𝐹2(𝑄2)

]
,

⟨𝑝′, 𝑠′ | 𝑗− (0) |𝑝, 𝑠⟩
��
IMF = 𝑒 2𝑃−

[
𝛿𝑠′𝑠 𝐺1(𝑄2) + (®𝜎𝑠′𝑠 × 𝑖®Δ)𝑧

2𝑀
𝐺2(𝑄2)

]
,

⟨𝑝′, 𝑠′ | ®𝑗⊥(0) |𝑝, 𝑠⟩
��
IMF = 𝑒 (𝜎𝑧)𝑠′𝑠 ( ®𝑒𝑧 × 𝑖®Δ⊥)𝐺𝑀 (𝑄2),

(12)

where 𝐺1 = (𝐺𝐸 − 𝜏𝐺𝑀 )/(1 + 𝜏) and 𝐺2 = −(𝐺𝐸 +𝐺𝑀 )/(1 + 𝜏). After Fourier transform, these
coincide with the 2D LF distributions [15, 18, 19].

4
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Figure 1: Spin-averaged EF charge distributions 𝜌𝐸𝐹
𝐸

≡ 𝐽0
EF (®𝑏⊥; 𝑃𝑧) for selected values of the nucleon

average momentum. The small panels on the right correspond to the electric (or convective) and magnetic
(or magnetization) contributions. Figure adapted from [30].

As a result of the combination of a four-vector transformation with a Wigner spin rotation, the
unpolarized charge distribution receives a magnetic contribution when ®𝑃 ≠ ®0. Since the induced
magnetic contribution in the neutron is large and opposite to the electric contribution, a negatively
charged region appears at the center of the LF charge distribution of the neutron, see Fig. 1. This is
purely an effect of perspective which shows that, although probabilistic, the LF distributions cannot
be interpreted as intrinsic densities.

4. Energy-momentum tensor

The energy-momentum tensor (EMT) is a fundamental operator in quantum field theory, for
it measures key properties of physical systems like, e.g., mass, spin and pressure. A direct access
to its matrix elements requires gravitational scattering, which is far too small to be measured in
practice. Some exclusive processes like deeply virtual Compton scattering are described in terms
of non-local correlators, known as generalized parton distributions, which can be related to some
of the gravitational FFs that parametrize the EMT matrix elements [39]. Gravitational FFs can
therefore in principle be constrained from experimental data. Applying the same formalism as for
the matrix elements of the electromagnetic current, one can define EMT distributions in the BF [11]
and generalize them to both the EF and the LF [29].

5
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The nucleon matrix elements of the quark EMT can conveniently be parametrized as

⟨𝑝′, 𝑠′ |𝑇 𝜇𝜈
𝑞 (0) |𝑝, 𝑠⟩ = 𝑢(𝑝′, 𝑠′)

[
𝑃𝜇𝑃𝜈

𝑀
𝐴𝑞 (𝑄2) + Δ𝜇Δ𝜈 − 𝑔𝜇𝜈Δ2

4𝑀
𝐷𝑞 (𝑄2) + 𝑀𝑔𝜇𝜈�̄�𝑞 (𝑄2)

+ 𝑃{𝜇𝑖𝜎𝜈}𝜆Δ𝜆

𝑀
𝐽𝑞 (𝑄2) − 𝑃[𝜇𝑖𝜎𝜈 ]𝜆Δ𝜆

𝑀
𝑆𝑞 (𝑄2)

]
𝑢(𝑝, 𝑠),

(13)

where the first four terms describe the symmetric part 𝑇 {𝜇𝜈} = (𝑇 𝜇𝜈 + 𝑇 𝜈𝜇)/2 while the fifth term
accounts for the antisymmetric part 𝑇 [𝜇𝜈 ] = (𝑇 𝜇𝜈 − 𝑇 𝜈𝜇)/2. A similar parametrization holds for
the gluon EMT. Poincaré symmetry implies conservation of linear and angular momentum, as well
as mechanical equilibrium, which amount to the following constraints on the gravitational FFs

𝐴𝑞 (0) + 𝐴𝑔 (0) = 1, 𝐽𝑞 (0) + 𝐽𝑔 (0) = 1
2 , �̄�𝑞 (𝑄2) + �̄�𝑔 (𝑄2) = 0. (14)

In the BF, one finds that

⟨𝑝′𝐵, 𝑠′𝐵 |𝑇00
𝑞 (0) |𝑝𝐵, 𝑠𝐵⟩ = 2𝑀𝑃0

𝐵 𝛿𝑠′
𝐵
𝑠𝐵

{
𝐴𝑞 (𝑄2) + �̄�𝑞 (𝑄2) + 𝜏[𝐷𝑞 (𝑄2) − 𝐵𝑞 (𝑄2)]

}
,

⟨𝑝′𝐵, 𝑠′𝐵 |𝑇
{0𝑘}
𝑞 (0) |𝑝𝐵, 𝑠𝐵⟩ = 2𝑃0

𝐵 (®𝜎𝑠′
𝐵
𝑠𝐵 × 𝑖®Δ)𝑘 𝐽𝑞 (𝑄2),

⟨𝑝′𝐵, 𝑠′𝐵 |𝑇
[0𝑘 ]
𝑞 (0) |𝑝𝐵, 𝑠𝐵⟩ = −2𝑃0

𝐵 (®𝜎𝑠′
𝐵
𝑠𝐵 × 𝑖®Δ)𝑘 𝑆𝑞 (𝑄2),

⟨𝑝′𝐵, 𝑠′𝐵 |𝑇
𝑖 𝑗
𝑞 (0) |𝑝𝐵, 𝑠𝐵⟩ = 2𝑀𝑃0

𝐵 𝛿𝑠′
𝐵
𝑠𝐵

{
Δ𝑖Δ 𝑗

4𝑀2 𝐷𝑞 (𝑄2) − 𝛿𝑖 𝑗 [�̄�𝑞 (𝑄2) + 𝜏𝐷𝑞 (𝑄2)]
}
,

(15)

where 𝐵𝑞 = 2𝐽𝑞 − 𝐴𝑞. Determining these matrix elements constitute one of the main motivations
of the physics program of the future Electron-Ion Collider [5]. Here are some examples of the
fundamental physical properties they encode:

• The amplitude ⟨𝑝′
𝐵
, 𝑠′

𝐵
|𝑇00
𝑞 (0) |𝑝𝐵, 𝑠𝐵⟩/(2𝑃0

𝐵
) is related via Fourier transform to the spatial

distribution of the quark energy 𝑇00
𝑞,𝐵

(®𝑟). In the forward limit Δ → 0, it reduces to the quark
contribution to the nucleon mass [40, 41].

• The spatial distribution of quark Belinfante angular momentum [42] is obtained from

J 𝑖
𝑞,𝐵 (®𝑟) = 𝜖 𝑖 𝑗𝑘𝑟 𝑗𝑇

{0𝑘}
𝑞,𝐵

(®𝑟), (16)

while the spatial distribution of quark kinetic angular momentum is given by 𝐽𝑖
𝑞,𝐵

(®𝑟) =

𝐿𝑖
𝑞,𝐵

(®𝑟) + 𝑆𝑖
𝑞,𝐵

(®𝑟) [32, 43] with the orbital and spin contributions defined as

𝐿𝑖
𝑞,𝐵 (®𝑟) = 𝜖 𝑖 𝑗𝑘𝑟 𝑗𝑇0𝑘

𝑞,𝐵 (®𝑟), 𝑆𝑖𝑞,𝐵 (®𝑟) =
1
2
⟨𝜓𝛾𝑖𝛾5𝜓⟩®0,®0(®𝑟). (17)

• Because of spherical symmetry about the center of the nucleon, the quark stress tensor is
described by two functions [11, 29, 44]

𝑇
𝑖 𝑗

𝑞,𝐵
(®𝑟) = 𝛿𝑖 𝑗 𝑝𝑞 (𝑟) +

(
𝑟 𝑖𝑟 𝑗

𝑟2 − 1
3
𝛿𝑖 𝑗

)
𝑠𝑞 (𝑟). (18)

Since the BF distributions are static, EMT conservation amounts to ∇𝑖𝑇
𝑖 𝑗

𝐵
(®𝑟) = 0 and leads

to a relation between the total isotropic pressure 𝑝(𝑟) and pressure anisotropy 𝑠(𝑟)

d
d𝑟

(
𝑝 + 2

3
𝑠

)
+ 2
𝑟
𝑠 = 0. (19)
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Mechanical equilibrium of the nucleon implies the von Laue condition
∫

d3𝑟 𝑝(𝑟) = 0.
Stability arguments further suggest that the quantity 𝐷𝑞 (0) + 𝐷𝑔 (0) = 𝑀

∫
d3𝑟 𝑟2 𝑝(𝑟)

should be negative [45].

The first extraction of the pressure distribution inside a proton from experimental data on deeply
virtual Compton scattering has been reported in [46], and followed by more conservative analy-
ses [47, 48]. Data on 𝐽/𝜓-photoproduction in the threshold region have also been used to extract
gluon gravitational FFs [49]. Recent calculations of the gravitational FFs from Lattice QCD can be
found for example in [50–52]. More details and references can be found in the review [8].

5. Conclusions

Electromagnetic and gravitational form factors encode in a Lorentz-invariant way key infor-
mation about the 3D structure and physical properties of hadrons. When relativistic recoil effects
cannot be neglected, spatial distributions become frame-dependent. The relativistic notion of spatial
distribution is then naturally formulated in a phase-space approach, where the strict probabilistic
interpretation is lost. From this perspective, it is possible to interpolate between the Breit frame
(𝑃𝑧 = 0) and light-front (𝑃𝑧 → ∞) pictures, and to show that the appearance of spatial distributions
in a moving frame is strongly impacted by the spin of the target.
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