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We formulate the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution of the Deep
Inelastic Scattering (DIS) structure functions 𝐹2 and 𝐹L at next to leading order in 𝛼𝑠 (NLO)
directly in terms of the structure functions rather than parton distributions (PDFs). We call this
the physical basis approach. In practice, we first express the NLO quark singlet and gluon PDFs
in terms of the structure functions 𝐹2 and 𝐹L in momentum space. Employing these expressions
in the DGLAP evolution, we arrive at the evolution equations for 𝐹2 and 𝐹L in the physical basis.
We demonstrate how one is free from defining a factorization scale and scheme when using the
physical basis evolution equations. We also discuss the process of applying the NLO physical
basis to global analysis of LHC cross sections.
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Evolution of structure functions at NLO without PDFs

1. Introduction

The future Electron-Ion-Collider (EIC) [1] will measure Deep Inelastic Scattering (DIS) cross
sections, increasing the importance for the accurate DIS structure function predictions. Parton
distribution functions (PDFs) are widely used un-observable quantities for expressing QCD pro-
cesses. However, they are dependent on the arbitrary factorization scale and scheme, which adds a
theoretical uncertainty to the predictions of QCD observables.

In an alternative approach one formulates the DGLAP evolution of DIS structure functions
directly in the so called physical basis. The physical basis consists of linearly independent DIS
structure functions – instead of PDFs – and is therefore free from the factorization scheme and scale
dependence. On the other hand, it is also more straightforward to directly parametrize physical
observables when fitting data. The idea of a physical basis was already discussed about forty years
ago in Ref. [2], and more recently for example in Refs. [3–9]. The novelty in this work is that the
final results are expressed in momentum space, instead of Mellin space, and the final physical basis
is a full three flavour basis at next to leading order in 𝛼s (NLO). This work is continuation for our
previous work on the LO physical basis, which was published earlier this year [10].

2. Constructing a physical basis

2.1 Two observable physical basis

In order to understand the method of constructing the physical basis, it is easiest to first consider
a basis consisting of only two observables. We choose to construct the two observable physical basis
with the structure functions 𝐹2 and 𝐹L, which are related to PDFs by convolutions with coefficient
functions 𝐶𝐹2,𝐿 𝑓 𝑗

𝐹2,𝐿 (𝑥, 𝑄2) =
∑︁
𝑗

𝐶𝐹2,𝐿 𝑓 𝑗 (𝑄2, 𝜇2) ⊗ 𝑓 𝑗 (𝜇2), (1)

where the PDFs 𝑓 𝑗 (𝜇2) are the quark singlet over light flavoursΣ(𝑥, 𝜇2) = ∑𝑛f
𝑞

[
𝑞(𝑥, 𝜇2) + 𝑞(𝑥, 𝜇2)

]
,

with 𝑛f = 3, and the gluon PDF 𝑔(𝑥, 𝜇2). The first step towards the physical basis is to invert the
linear mapping from the PDF basis to the basis of structure functions, i.e. expressing the quark
singlet and the gluon in terms of the structure functions as

𝑓 𝑗 (𝜇2) =
∑︁
𝑖

𝐶−1
𝐹𝑖 𝑓 𝑗

(𝑄2, 𝜇2) ⊗ 𝐹𝑖 (𝑄2) + O(𝛼2
s ). (2)

Here the expressions have been truncated at the order 𝛼2
s , which will be discussed in more detail in

the next section.
When constructing the DGLAP evolution in the physical basis, we start from the compact

notation of the conventional form of DGLAP evolution
d𝐹𝑖 (𝑥, 𝑄2)
d log

(
𝑄2) =

∑︁
𝑗

d𝐶𝐹𝑖 𝑓 𝑗 (𝑄2, 𝜇2)
d log

(
𝑄2) ⊗ 𝑓 𝑗 (𝜇2), (3)

where the DGLAP splitting functions are hidden inside the 𝑄2 derivatives of the coefficient func-
tions. We then move to evolution in the physical basis just by inserting the expressions for PDFs in
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the physical basis in Eq. (2)
d𝐹𝑖 (𝑥, 𝑄2)
d log

(
𝑄2) =

∑︁
𝑗

d𝐶𝐹𝑖 𝑓 𝑗 (𝑄2, 𝜇2)
d log

(
𝑄2) ⊗

∑︁
𝑘

𝐶−1
𝐹𝑘 𝑓 𝑗

(𝑄2, 𝜇2) ⊗ 𝐹𝑘 (𝑄2) + O(𝛼3
s )

≡
∑︁
𝑘

P𝑖𝑘 ⊗ 𝐹𝑘 (𝑄2) + O(𝛼3
s ),

(4)

where 𝑖 = 2, 𝐿 and 𝑓 𝑗 = Σ, 𝑔. Here we have truncated the expression at O(𝛼3
s ). From Eq. (4) one can

see that the factorization scheme and scale dependence has to cancel within the evolution kernels
P𝑖𝑘 , and therefore we do not have to fix the value for the factorization scale 𝜇. The cancellation has
to happen between the coefficient functions and the splitting functions from which the evolution
kernels are composed of. We have implemented the two dimensional physical basis numerically,
and the results are shown in Fig. 1. As expected at NLO, one sees difference in between the DGLAP
evolved values in the physical basis and the PDF based values. The differences comes from the
uncertainty caused by the scheme and scale dependence in the PDFs, and also from the perturbative
truncation in the inversion from the structure functions to the PDFs in Eq. (2).

2.2 Inverting the linear mapping perturbatively

The inversion of the linear mapping in Eq. (2) can be done exactly at the leading order (LO) in
𝛼s, by first inverting PDFs in the Mellin space, and then identifying the momentum space solution.
In the next to leading order (NLO) in 𝛼s the coefficient functions in Eq. (1) are not as simple as
in LO, thus an exact inversion becomes challenging. However, we can invert the linear mapping
perturbatively.

101 102 103

Q2 (GeV2)

100

101

F 2

x = 10 6

x = 10 4

x = 10 2

x = 10 1

CT14 x = 10 6

CT14 x = 10 4

CT14 x = 10 2

CT14 x = 10 1

(a) 𝐹2 CT14 NLO

101 102 103

Q2 (GeV2)

10 2

10 1

100

F L

x = 10 6

x = 10 4

x = 10 2

x = 10 1

CT14 x = 10 6

CT14 x = 10 4

CT14 x = 10 2

CT14 x = 10 1

(b) 𝐹L CT14 NLO

Figure 1: Comparison of the structure functions 𝐹2 and 𝐹L computed from DGLAP evolved PDFs (colourful
markers) to the structure functions computed via DGLAP evolution in physical basis (black lines). Here the
initial values for the physical basis evolution are calculated using PDFs. For PDFs we used the LHAPDF
library [11] and the CT14lo_NF3 PDF set.
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A straightforward demonstration of the perturbative inverting is to consider a case with only
the gluon PDF in the following expression of the structure function 𝐹L

𝐹L = 𝐶
(1)
𝐹L𝑔

⊗ 𝑔 + 𝛼s(𝑄2)
2𝜋

𝐶
(2)
𝐹L𝑔

⊗ 𝑔, (5)

where 𝐹L(𝑥, 𝑄2) ≡ (2𝜋/𝛼s(𝑄2))𝐹L(𝑥, 𝑄2)/𝑥. If one now defines a differential operator

�̂�(𝑥) ≡ 1
8𝑇R𝑛f𝑒

2
𝑞

[
𝑥2 d2

d𝑥2 − 2𝑥
d
d𝑥

+ 2
]
, (6)

and uses it to operate on the first term of right hand side of Eq. (5), only the gluon PDF remains

𝑔(𝑥) = �̂�(𝑥)
[
𝐶

(1)
𝐹L𝑔

⊗ 𝑔

]
. (7)

Now one can express the term 𝐶
(1)
𝐹L𝑔

⊗ 𝑔 as 𝐹L − 𝛼s (𝑄2 )
2𝜋 𝐶

(2)
𝐹L𝑔

⊗ 𝑔 and insert that into Eq. (7), which
leads to an expression

𝑔(𝑥) = �̂�(𝑥)
[
𝐹L(𝑥) −

𝛼s(𝑄2)
2𝜋

𝐶
(2)
𝐹L𝑔

⊗ 𝑔

]
, (8)

where one can replace the gluon on the right hand side by inserting 𝑔(𝑥) = �̂�(𝑥)𝐹L(𝑥) +O
(
𝛼s(𝑄2)

)
𝑔(𝑥) = �̂�(𝑥)𝐹L(𝑥) −

𝛼s(𝑄2)
2𝜋

�̂�(𝑥)
[
𝐶

(2)
𝐹L𝑔

⊗ �̂�𝐹L

]
+ O

(
𝛼2

s (𝑄2)
)
, (9)

and truncating the solution at 𝛼2
s .

The method of pertubatively inverting the gluon PDF, shown above, can be extended to a
system with all the quark flavours. One just needs to entail the same degrees of freedom in the
physical basis as in the PDF basis. The perturbative expansion can also be continued to higher
orders in 𝛼s. However in order to be consistent with the perturbative order of the physical basis,
the truncation order should match the order of the selected structure functions. The perturbative
inversion prevents calculating an exactly conserved momentum sum rule from the inverted PDFs.

2.3 Extending to a six observable physical basis

A simplified example of a physical basis with two observables was discussed above. As already
mentioned, the same steps can be applied to establish a more complete physical basis. In our a work
in progress we are constructing a six dimensional physical basis which covers the quark flavours
𝑢, �̄�, 𝑑, 𝑑, and 𝑠 = 𝑠. By including also the gluon PDF in our set or partons, we have in total six
degrees of freedom meaning that in order to obtain the physical basis we need to choose six linearly
independent structure functions. From the neutral current DIS we choose structure functions 𝐹2 and
𝐹L corresponding to the virtual photon exchange, and 𝐹3 corresponding to the 𝑍-boson exchange.
Then from charged current DIS we choose structure functions 𝐹W−

2 , 𝐹W−

3 , and 𝐹W−

2c corresponding
to the 𝑊− boson exchange. Here we do not consider the quark mixing.

3. Cross sections in a physical basis

Since the physical basis approach is based on replacing PDFs, at least in principle, one can
express all the PDF dependent cross sections in a physical basis. Here we consider an example
cross section; a Higgs production by gluon fusion, defined as

𝜎(𝑝 + 𝑝 −→ H + 𝑋) =
∫

d𝑥1d𝑥2𝑔(𝑥1, 𝜇)𝑔(𝑥2, 𝜇)�̂�𝑔𝑔→𝐻+𝑋

(
𝑥1, 𝑥2,

𝑚2
𝐻

𝜇2

)
, (10)
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where 𝑚𝐻 is the Higgs mass, �̂�𝑔𝑔→𝐻+𝑋 is the parton level cross section, and 𝑔(𝑥1, 𝜇) and 𝑔(𝑥2, 𝜇)
are the gluon PDFs. Expressing the Higgs production cross section in terms of a physical basis is
simple; one just plugs in the physical basis expression for the gluon PDF
𝑔(𝑥, 𝜇2) =

∑
𝑗 𝐶

−1
𝑗𝑔
(𝑄2, 𝜇2) ⊗ 𝐹𝑗 (𝑄2), where 𝐹𝑗 = 𝐹2, 𝐹L, 𝐹3, 𝐹

W−

2 , 𝐹W−

3 , and 𝐹W−

2c in the six
observable basis. The Higgs production cross section in terms of physical basis is then expressed
as
𝜎(𝑝 + 𝑝 −→ 𝐻 + 𝑋) =∫

d𝑥1d𝑥2�̂�𝑔𝑔→𝐻+𝑋 (𝑥1, 𝑥2,
𝑚2

𝐻

𝜇2 )
[∑︁

𝑗

𝐶−1
𝑗𝑔 (𝑄2, 𝜇2) ⊗ 𝐹𝑗 (𝑄2)

]
𝑥1

[∑︁
𝑘

𝐶−1
𝑘𝑔 (𝑄

2, 𝜇2) ⊗ 𝐹𝑘 (𝑄2)
]
𝑥2

,

(11)
where the subscripts 𝑥1 and 𝑥2 refer to the Bjorken-𝑥 values in the convolutions. It was noticed in
Ref. [6] that when cross sections are structured as above, the explicit 𝜇 dependence cancels, and in
the terms containing logarithms only rations of physical scales log

(
𝑄2/𝑚2

𝐻

)
remain.

4. Summary

We have constructed a two dimensional physical basis at NLO, for which we have made a
numerical implementation. We have discussed on how the physical basis approach is free from the
factorization scale and scheme dependence. The extension for the full three-flavour physical basis,
with six observables, has been established formally; however, the numerical implementation is still
in progress. We have demonstrated how the physical basis can be applied to other processes, such
as Higgs production by fusion of two gluons.

The future work will study LHC cross sections in terms of physical basis. The aim is also to
implement heavy quark flavours in our approach, which will increase the number of the structure
functions needed to span the physical basis.
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