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The four-loop DGLAP splitting functions, which govern the scale evolution of the Parton Distri-
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to N3LO accuracy, as required to match the experimental precision at the LHC and at the forth-
coming EIC. In this talk, I will report on the recent progress in the determination of the splitting
functions from the direct calculation of a fixed number of moments of these quantities. This
approach allows to control the evolution of the PDFs to percent-level precision over the relevant
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1. Introduction

The next decade of experiments at the Large Hadron Collider (LHC) will probe the Stan-
dard Model with unprecedented precision. The experimental uncertainties in the measurement
of the Higgs production cross section are expected to approach the level of 1% [1]. In addition,
new measurements of the Deep Inelastic Scattering process will be performed at the forthcoming
Electron-Ion Collider facility. These are also expected to reach uncertainties of the order of 1% [3].
To compare this data with theoretical predictions at the same level of accuracy, it is necessary to
compute the collider observables through N3LO in QCD [2].

One necessary element to carry out consistent N3LO phenomenology is the calculation of the
partonic cross sections to such accuracy. In this respect, the N3LO era began with the pioneering
results of [4, 5] for DIS and, for LHC processes, with the work [6] on Higgs production in
gluon fusion. The other ingredient for N3LO phenomenology is the determination of the Parton
Distribution Functions (PDFs) to such accuracy. Indeed, the error associated to employing only
NNLO PDFs in N3LO calculations has been estimated as [7]

𝛿(PDF-TH) = 1
2

����𝜎NNLO,NNLO-PDFs − 𝜎NNLO,NLO-PDFs

𝜎NNLO,NNLO-PDFs

���� ∼ O(%), (1)

where 𝜎NNLO,NNLO-PDFs is the cross section produced by convoluting the NNLO partonic cross
sections with the NNLO PDFs, while 𝜎NNLO,NLO-PDFs is the convolution of NNLO partonic cross
sections and NLO PDFs. To remove this uncertainty, several PDF collaborations started working on
fitting approximate N3LO PDFs [8–13], using the theoretical information that is currently available.

A key ingredient is the scale evolution of the PDFs

𝜇2 𝑑

𝑑𝜇2 𝑓i

(
𝑥, 𝜇2

)
≡ ¤𝑓i

(
𝑥, 𝜇2

)
=

∫ 1

𝑥

𝑑𝑦

𝑦
𝑃ij(𝛼𝑠, 𝑦) 𝑓j

(
𝑥

𝑦
, 𝜇2

)
, i, j = q, g, (2)

where the splitting functions 𝑃ij admit the perturbative expansion

𝑃ij(𝛼𝑠, 𝑥) = 𝑎 𝑃
(0)
ij + 𝑎2 𝑃

(1)
ij + 𝑎3 𝑃

(2)
ij + 𝑎4 𝑃

(3)
ij , 𝑎 =

𝛼𝑠

4𝜋
, (3)

such that the N3LO evoultion requires the calculation of the splitting functions to four loops. Given
the challenges of the calculation, only partial results are currently available. In particular there has
been significant progress regarding the colour factors featuring (powers of) the number of fermions,
𝑛 𝑓 , [14–20] and in the planar limit of the flavour non-singlet splitting functions [21].

2. Fixed moments of the splitting functions

This talk focuses on the approximations of the splitting functions based on the calculation of
the Mellin moments

𝛾
(𝑘 )
ij (𝑁) = −

∫ 1

0
𝑑𝑥 𝑥𝑁−1 𝑃

(𝑘 )
ij (𝑥, 𝛼𝑠). (4)

This approach has been used successfully in [21], which provides a high-precision approximation
of the N3LO evolution of the flavour non-singlet quark distributions. This parameterisation was
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Figure 1: Left: approximation of 𝑃 (2)
ps compared to the exact result. Right: parameterisation of 𝑃 (3)

ps .

constructed by fixing the first 8 even Mellin moments of 𝑃ns(𝑥) and the behaviour of the splitting
function in the large-𝑥 and in the small-𝑥 limits.

The crucial theoretical tool employed in [21] is the Operator Product Expansion (OPE) approach
[22], which allows to compute efficiently the moments 𝛾

(𝑘 )
ij (𝑁) as the anomalous dimensions of

gauge invariant operators. Unfortunately, in the flavour singlet sector the OPE method is far from
trivial. Its formulation at two-loop level was developed a long time ago [22–24], but its extension
to three and four loop has been studied only recently [25–27]. Following the approach of ref. [25],
the moments up to 𝑁 = 20 were computed for the quark-to-quark splitting function [28] and for
the gluon-to-quark splitting function [29]. As a check, these results reproduce the correct large-𝑛 𝑓

limit [17]. The 𝑛2
𝑓

colour factor of 𝑃 (3)
qq has also been computed and is in agreement with [28]. In

addition, the moments up to 𝑁 = 12 of 𝑃 (3)
qq and up to 𝑁 = 10 for the remaining splitting functions

have been computed by expanding the DIS structure functions [30, 31] and agree with [28, 29].
In this talk, the calculation of the moments of 𝑃 (3)

gq for 𝑁 ≤ 20 was announced for the first
time. The results for these moments, which are provided in [32], agree with the large-𝑛 𝑓 limit [17]
and with the known result for the 𝑛2

𝑓
colour factor [20]. In addition, the moments up to 𝑁 = 10 are

checked with the DIS calculation [30, 31].

3. Approximate evolution

Following [21], the evolution of the PDF is approximated with analytic parameterisations that
reproduce the known moments of the splitting functions [28, 29, 32] and match the behaviour for
𝑥 → 1 and 𝑥 → 0. The available information in the former limit is summarised as

𝑃
(𝑛)
ij, 𝑥→1(𝑥) =

2𝑛∑︁
ℓ = 0

∞∑︁
𝑝 = 0

𝐶
ij
𝑛,ℓ, 𝑝

(1−𝑥) 𝑝 ln 2𝑛−ℓ (1−𝑥) . (5)

Notably, the leading power contribution to 𝑃ps = 𝑃qq−𝑃 (+)
ns vanishes,𝐶ps

3,ℓ,0 = 0, and the coefficients
𝐶

ps
3,ℓ,1 for ℓ = 4, 3 were predicted in [33]. The coefficients 𝐶 qg

3,ℓ, 𝑝 and 𝐶
gq
3,ℓ, 𝑝 have been predicted for
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Figure 2: Approximation of 𝑃 (3)
qg in linear scale in 𝑥 (left) and logarithmic scale (right).

ℓ = 0, 1, 2 in ref. [33–35]. The small-𝑥 expansion reads

𝑃
(𝑛)
ij, 𝑥→0 (𝑥) =

𝑛∑︁
ℓ = 1

𝐸
ij
𝑛,ℓ

ln 𝑛−ℓ 𝑥

𝑥
+

2𝑛∑︁
ℓ = 0

𝐹
ij
𝑛,ℓ

ln 2𝑛−ℓ 𝑥 + O (𝑥 ln 𝑎 𝑥) . (6)

The coefficients of the leading power logarithm 𝐸
ij
𝑛,1 are known [36], as well as the highest three

sub-dominant 𝑥 0 logarithms, 𝐹 ij
𝑛,ℓ

, for ℓ = 0, 1, 2 at 𝑛 = 3, 4 [37]. By constructing families of
curves that obey these constraints, we obtain a parameterisations of each splitting functions in 𝑥-
space with its associated uncertainty, given by the spread of the curves. As a test of this procedure,
Fig. 1 (left) shows the comparison between the exact pure singlet splitting function at NNLO [38]
and the approximation constructed with this method. Fig. 1 (right) shows the approximation of
𝑃
(3)
ps and its uncertainty, which increases as 𝑥 → 0. The approximation of 𝑃 (3)

qg is given in Fig. 2.
The errors are larger compared to 𝑃

(3)
ps , because the unknown large-𝑥 logarithms in eq. (5) are not

suppressed by a power of 1 − 𝑥, contrary to the pure singlet case. We are now in the position to
approximate the complete evolution of the quark density, using eq. (2), ¤𝑓q = 𝑃qq ⊗ 𝑓q + 𝑃qg ⊗ 𝑓g.
To this end, we use model quark and gluon PDFs [38]

𝑥 𝑓q = 0.6 𝑥−0.3(1 − 𝑥)3.5(1 + 5.0𝑥0.8), (7a)

𝑥 𝑓g = 1.6 𝑥−0.3(1 − 𝑥)4.5(1 − 0.6𝑥0.3). (7b)

Notice that the PDFs are suppressed at 𝑥 → 1. Therefore, in the convolution integral of eq. (2),
the large uncertainties of the splitting functions at small 𝑥, 𝑃ij(𝑧 → 0), are significantly reduced
by the factor 𝑓j( 𝑥𝑧 → 1). The scale derivative of the singlet PDF, ¤𝑓q, both at NNLO and at N3LO,
is reported in Fig. 3 (left). Each curve is normalised by the previous perturbative order, showing
that the N3LO calculation shifts the NNLO evolution by less than 1% for 𝑥 ≥ 10−4 and by 2% at
𝑥 = 10−5. The error associated with the parameterisation is negligible for 𝑥 ≳ 10−4, it increases at
small 𝑥 and is O(1%) at 𝑥 = 10−5. The variation of ¤𝑓q with the renormalisation scale

Δ 𝜇r ¤𝑞s ≡
max [ ¤𝑞s(𝑥, 𝜇 2

r = 𝜆 𝜇 2
f )] − min [ ¤𝑞s(𝑥, 𝜇 2

r = 𝜆 𝜇 2
f )]

2| average [ ¤𝑞s(𝑥, 𝜇 2
𝑟 = 𝜆 𝜇 2

f )] |
, (8)
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Figure 3: Left: Scale derivative of the quark singlet PDF at NNLO and at N3LO normalised by the previous
order. The normalisation introduces a pole at 𝑥 ∼ 10−1, where ¤𝑓q changes sign, but it shows the impact of
each perturbative order. Right: stability of the evolution under variations of the renormalisation scale.

with 𝜆 = 1
4 . . . 4, gives an estimate on the theoretical error. As shown in Fig. 3 (right), the scale

uncertainty improves at N3LO, where it is below 2% for 𝑥 ≳ 104, compared to O(6%) at NNLO.
Finally, two different approximations of 𝑃 (3)

gq are shown in Fig. 4. One (dashed blue) relies on
the moments up to 𝑁 = 10, the other (in red) includes the new moments computed in [32]. The
former has small uncertainties for 𝑥 ≳ 10−1 that grow for 𝑥 → 0. When 5 additional moments are
included, the uncertainty remains small for 𝑥 ≳ 10−2.

4. Conclusion

The level of precision of the forthcoming measurements at the LHC and at the EIC will
approach O(1%). On theory side, matching this level of accuracy requires N3LO calculations in
QCD. The N3LO splitting functions are key missing ingredients to compute collider observables to
this level of accuracy. Recently, there was significant progress towards this goal.

This paper reports on the approximation of 𝑃 (3)
qq , 𝑃 (3)

qg and 𝑃
(3)
gq , based on the calculation of

a set of Mellin moments of these splitting functions [28, 29, 32]. The approximation is obtained
by constructing a family of functions that matches the computed Mellin moments, as well as the
known limits of the splitting functions at large 𝑥 and at small 𝑥. As a general feature, the uncertainty
associated to this approximation increases for small values of 𝑥. The information of new fixed
moments at 10 < 𝑁 ≤ 20 reduces the uncertainty band in the region 10−2 ≲ 𝑥 ≲ 10−1, see Fig. 4.

The approximate splitting functions have been used determine the scale evolution of the flavour
singlet quark density. Notably, the large uncertainty of the splitting functions at small-𝑥 is suppressed
in the convolution with the PDFs, which vanish in the large-𝑥 limit. As a result, the evolution of the
quark singlet PDF is determined with high precision over the region 𝑥 ≳ 10−4, which is relevant at
the LHC and at the EIC. At 𝑥 = 10−5, the uncertainty on the approximate evolution is of O(1%),
in line with the precision goal set by the experiments. The impact of the N3LO calculation on
the evolution of the quark PDF is at sub-percent level for 𝑥 ≳ 10−4 and is about 2% at 𝑥 = 10−5.
Similarly, changing the renormalisation scale gives effects below O(3%) at 𝑥 ∼ 10−5.
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Figure 4: Approximation of 𝑃 (3)
gq based on ten Mellin moments (in red), compared to the one obtained from

five moments (dashed, blue), both in linear scale (left) and in logarithmic scale (right).

The splitting function 𝑃gg is the missing ingredient to determine the approximate evolution of
the gluon PDF. Currently, the moments up to 𝑁 = 10 are available, but these are not sufficient to
parameterise the splitting function with high precision over the whole range of values of 𝑥 probed
at the LHC. The calculation of further Mellin moments is now work in progress.
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