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1. Introduction

QCD predictions for high-energy observables at hadron colliders depend on the factorization
theorem, which encapsulates the structure of hadrons through universal parton distribution functions
(PDFs). The evolution of these PDFs with energy scale is determined by the DGLAP equations [1–
3], where splitting functions play a key role. Achieving high precision in both PDFs and splitting
functions is essential for accurate phenomenological predictions for the Large Hadron Collider
(LHC) and the upcoming Electron-Ion Collider (EIC). Current cutting-edge calculations of splitting
functions extend to the four-loop level, with several partial results recently published [4–16]. These
findings have already contributed to deriving approximate N3LO PDFs [17, 18].

A significant portion of the current four-loop results for splitting functions comes from calcula-
tions of four-loop off-shell operator matrix elements (OMEs). OMEs refer to matrix elements with
a single insertion of twist-two quark or gluon operators, for the case of two partons in the external
states it is

𝐴𝑖 𝑗 = ⟨ 𝑗(𝑝)|𝑂𝑖 | 𝑗(𝑝)⟩ with 𝑝2 < 0 (1)

with 𝑂𝑖 being a twist-two operator. The off-shell method approach has proven to be particularly
efficient for obtaining splitting functions. However, renormalization presents a complication:
physical twist-two operators mix with unidentified gauge-variant (GV) operators. Identifying these
unknown GV operators or determining the associated counterterm Feynman rules remains one of the
significant challenges in calculating four-loop splitting functions. Despite extensive efforts in this
field [19–24], a complete solution has yet to be found. Recently, generalized BRST and anti-BRST
constraints on the structure of GV operators for any value of moments 𝑛 were derived in [25]. A
method for solving these constraints and computing the corresponding Feynman rules (at leading
order) for up to five external legs, with all-𝑛 dependence, was subsequently presented in [26].
In [27], an alternative approach was proposed by us to derive all-𝑛 GV counterterm Feynman rules.
Within our approach, all leading GV counterterm Feynman rules with all-𝑛 dependence for five
external legs was recently available in [28]. In this talk, we will list all required OMEs that are
necessary to extract the four-loop splitting functions and discuss their computations.

In Section 2, we briefly review the method described in [27]. We then list all required OMEs
and discuss their computations in Section 3. In Section 4, we present some of the results achieved
so far in our approach. Finally, we conclude in Section 5.

2. Review of the method to renormalize the twist-two operators

Twist-two operators are divided into two categories: non-singlet and singlet operators, based
on the flavor symmetry group SU(𝑁 𝑓 ). The non-singlet sector contains a single quark operator for
each spin-𝑛:

𝑂ns(𝑛) =
𝑖𝑛−1

2

[
𝜓̄𝑖1Δ · 𝛾(Δ · 𝐷)𝑖1𝑖2(Δ · 𝐷)𝑖2𝑖3 · · · (Δ · 𝐷)𝑖𝑛−1𝑖𝑛

𝜆𝑘

2
𝜓𝑖𝑛

]
, 𝑘 = 3, · · · 𝑁2

𝑓 − 1 . (2)

Additionally, there are two physical singlet operators: one for quarks and one for gluons:

𝑂𝑞(𝑛) =
𝑖𝑛−1

2

[
𝜓̄𝑖1Δ · 𝛾(Δ · 𝐷𝜇)𝑖1𝑖2(Δ · 𝐷)𝑖2𝑖3 · · · (Δ · 𝐷)𝑖𝑛−1𝑖𝑛

𝜓𝑖𝑛

]
,
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𝑂𝑔(𝑛) = − 𝑖
𝑛−2

2

[
Δ𝜇1 · 𝐺

𝜇1
𝑎1,𝜇(Δ · 𝐷)𝑎1𝑎2

· · · (Δ · 𝐷)𝑎𝑛−2𝑎𝑛−1
Δ𝜇𝑛𝐺

𝜇𝑛𝜇
𝑎𝑛−1𝑎𝑛

]
. (3)

In these expressions, 𝜆𝑘/2 represents the diagonal generators of the flavor group 𝑆𝑈(𝑁 𝑓 ), while Δ

is a light-like vector satisfying Δ2 = 0. The notations 𝜓 and 𝐺 correspond to the quark field and
gluon field strength tensor, respectively. The covariant derivative 𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔𝑠T𝑎𝐴𝑎

𝜇 acts in either
fundamental or adjoint representations of the gauge group SU(𝑁𝑐) with 𝐴𝑎

𝜇 being the gauge filed.
The non-singlet sector allows a multiplicative renormalization:

𝑂R
ns(𝜇, 𝑛) = 𝑍ns(𝜇, 𝑛)𝑂B

ns(𝑛), (4)

where 𝑂B and 𝑂R refer to the bare and renormalized operators, respectively.
As stated in the previous Section, the renormalization in the singlet sector is much more

involved. A naive renormalization with the following form(
𝑂𝑞

𝑂𝑔

)R,naive

=

(
𝑍𝑞𝑞 𝑍𝑞𝑔

𝑍𝑔𝑞 𝑍𝑔𝑔

) (
𝑂𝑞

𝑂𝑔

)B

(5)

should be generalized to the renormalization involving GV operators (counterterms):

©­­«
𝑂𝑞

𝑂𝑔

𝑂𝐴𝐵𝐶

ª®®¬
R

=
©­­«
𝑍𝑞𝑞 𝑍𝑞𝑔 𝑍𝑞𝐴

𝑍𝑔𝑞 𝑍𝑔𝑔 𝑍𝑔𝐴

0 0 𝑍𝐴𝐴

ª®®¬
©­­«

𝑂𝑞

𝑂𝑔

𝑂𝐴𝐵𝐶

ª®®¬
B

+
©­­«
[𝑍𝑂]GV

𝑞

[𝑍𝑂]GV
𝑔

[𝑍𝑂]GV
𝐴

ª®®¬
B

. (6)

Some explanations of symbols and notations are in order. The shorthand notation 𝑂𝐴𝐵𝐶 denotes
the GV operators𝑂𝐴𝐵𝐶 = 𝑂𝐴+𝑂𝐵+𝑂𝐶 with𝑂𝐴, 𝑂𝐵, 𝑂𝐶 being the pure-gluon, quark-gluon, and
ghost-gluon GV operators respectively. At higher-loop orders, three twist-two GV counterterms
[𝑍𝑂]GV

𝑞 , [𝑍𝑂]GV
𝑔 , [𝑍𝑂]GV

𝐴 are also involved in the renormalization procedure. Here, 𝑍 and 𝑂 are
written as a whole since it is difficult or not possible (also not required for practical calculations) to
disentangle the renormalization constants 𝑍 from the associated operators𝑂 when retaining the all-𝑛
dependence. Notice that the subscript 𝑖 in [𝑍𝑂]GV

𝑖 is simply a label concerning the renormalization
of the 𝑂𝑖 operator. The counterterm Feynman rules for each [𝑍𝑂]GV

𝑖 could involve pure-gluon,
quark-gluon, and ghost-gluon vertices. The GV counterterms allow a formal expansion in 𝑎𝑠 as the
following form

[𝑍𝑂]GV
𝑖 =

∞∑︁
𝑙

𝑎𝑙𝑠 [𝑍𝑂]GV, (𝑙)
𝑖

,with 𝑖 = 𝑞, 𝑔, 𝐴 , (7)

where 𝑎𝑠 = 𝛼𝑠/(4𝜋). The eq. (6) is designed such that the GV counterterms are separated from GV
operators 𝑂𝐴𝐵𝐶 by the different loop orders they start to contribute, i.e.,

𝑍𝑞𝐴 =O(𝑎2
𝑠), [𝑍𝑂]GV

𝑞 = O(𝑎3
𝑠),

𝑍𝑔𝐴 =O(𝑎𝑠), [𝑍𝑂]GV
𝑔 = O(𝑎2

𝑠),

𝑍𝐴𝐴 =O(𝑎0
𝑠), [𝑍𝑂]GV

𝐴 = O(𝑎𝑠) . (8)

3
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A crucial observation in [27] is that the (counterterm) Feynman rules of the associated GV oper-
ators or counterterms can be derived by computing the all-off-shell OMEs with insertions of eq. (6).
Without loss of generality, we consider the following physical gluon operator renormalization:

𝑂R
𝑔 = 𝑍𝑔𝑞𝑂

B
𝑞 + 𝑍𝑔𝑔𝑂

B
𝑔 + 𝑍𝑔𝐴𝑂

B
𝐴𝐵𝐶 + [𝑍𝑂]GV

𝑔 . (9)

As we are considering the renormalization of a leading-twist operator, it suffices to deal with
the following one-particle-irreducible (1PI) OMEs with off-shell external states consisting of two
partons of type 𝑗 plus 𝑚 gluons,

⟨ 𝑗 |𝑂𝑔 | 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, R
1PI = 𝑍 𝑗(

√︁
𝑍𝑔)𝑚

[
⟨ 𝑗 |(𝑍𝑔𝑞𝑂𝑞 + 𝑍𝑔𝑔𝑂𝑔)| 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, B

1PI

]
+ 𝑍 𝑗(

√︁
𝑍𝑔)𝑚

[
𝑍𝑔𝐴 ⟨ 𝑗 |𝑂𝐴𝐵𝐶 | 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, B

1PI + ⟨ 𝑗 | [𝑍𝑂]GV
𝑔 | 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, B

1PI

]
. (10)

Here 𝑗 could be a quark (𝑞), gluon (𝑔), or ghost (𝑐), and
√︁
𝑍 𝑗 is the associated field renormalization

constant. To make the extraction of (counterterm) Feynman rules transparent, we expand the
all-off-shell OMEs according to the number of legs 𝑚 + 2 and loops 𝑙,

⟨ 𝑗 |𝑂 | 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚 =
∞∑︁
𝑙=0

[
⟨ 𝑗 |𝑂 | 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (𝑙), (𝑚)] 𝑎𝑙𝑠 𝑔𝑚𝑠 . (11)

The left-hand side of the above equation is ultraviolet-renormalized and infrared finite (because all
external partons are off-shell). Therefore, the summation on the right-hand side of the equation
should be finite, i.e., free from poles in the dimensional regulator 𝜖 . And due to the hierarchy
between the physical operators and GV operators (counterterms) shown in equation (8), it provides
a method for deriving the GV (counterterm) Feynman rules order by order by computing the
corresponding off-shell OMEs. For example, the two-ghost plus 𝑚-gluon Feynman rules for the
𝑂𝐶 operator can be written in the following compact form,

⟨𝑐 |𝑂𝐶 |𝑐 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (0), (𝑚)
1PI = − 1

𝑍
(1)
𝑔𝐴

[
⟨𝑐 |𝑂𝑔 |𝑐 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (1), (𝑚), B

1PI

]
div

, (12)

where the subscript ’div’ stands for the pole part in dimensional regulator 𝜖 , and only the one-loop
OMEs are required to extract the Feynman rules as shown on the left-hand side. In the above
equation, 𝑍 (1)

𝑔𝐴
is the leading GV renormalization constant

𝑍
(1)
𝑔𝐴

=
1
𝜖

𝐶𝐴

𝑛(𝑛 − 1)
(13)

which are free from the number of legs and can be determined by setting 𝑚 = 0. In practice, we
found that the numerator on the right-hand side of eq. (12) is proportional to 𝑍

(1)
𝑔𝐴

which cancels
against the denominator. Therefore, the renormalization constant 𝑍𝑔𝐴 can be separated from the
operator 𝑂𝐶 . It is also true in the cases of 𝑂𝐴 and 𝑂𝐵, and this is the reason that we call 𝑂𝐴𝐵𝐶 as
operators instead of counterterms.

The aforementioned approach can also be directly applied to derive the counterterm Feynman
rules at two-loop order and beyond. The only difference is that at two-loop order or beyond, we

4



P
o
S
(
D
I
S
2
0
2
4
)
0
6
2

Towards four-loop splitting functions in QCD Tong-Zhi Yang

Og Og Og

Figure 1: Representative 2-loop Feynman diagrams to derive the counterterm Feynman rules with 3 legs
resulting from [𝑍𝑂]GV, (2)

𝑔 .

PPPPPPPPPLoops
Legs

2 3 4 5 6

0 A. D. [𝑍𝑂]GV, (3)
𝑔 [𝑍𝑂]GV, (2)

𝑔 𝑂𝐴𝐵𝐶 𝑂𝑞, 𝑂𝑔

1 [𝑍𝑂]GV, (3)
𝑔 [𝑍𝑂]GV, (2)

𝑔 𝑂𝐴𝐵𝐶 𝑂𝑔

2 [𝑍𝑂]GV, (2)
𝑔 𝑂𝐴𝐵𝐶 𝑂𝑔

3 𝑂𝐴𝐵𝐶 𝑂𝑔

4 𝑂𝑞, 𝑂𝑔

Table 1: All required OMEs to derive four-loop splitting functions. The A. D. represents the anomalous
dimensions or splitting functions.

cannot disentangle the renormalization constants from the assisted operators. For further details,
please refer to [27]. Figure 1 illustrates several sample diagrams used in the extraction of two-loop
counterterm Feynman rules with three legs. We emphasized again that the above method is general
and applies to any number of loops and legs.

3. Required OMEs and their computations

In the previous section, we reviewed a method for renormalizing physical twist-two operators.
This method allows us to derive the necessary GV (counterterm) Feynman rules through the
computations of all-off-shell multi-loop multi-leg OMEs. In tab. 1, we list all required OMEs that
allow the extraction of four-loop splitting functions. The workflow for deriving four-loop splitting
functions, as outlined in the table (read it from right to left and from bottom to top), consists of
several sequential steps:

• Write down all-𝑛 Feynman rules for physical operators 𝑂𝑞 and 𝑂𝑔 up to six legs.

• Derive the all-𝑛 Feynman rules for 𝑂𝐴𝐵𝐶 by computing the one-loop all-off-shell matrix
elements with 𝑂𝑔 insertion up to five legs.

• Derive two-loop and three-loop all-𝑛 counterterm Feynman rules for [𝑍𝑂]GV,(2)
𝑔 and [𝑍𝑂]GV,(3)

𝑔

by computing all-off-shell OMEs with 𝑂𝑔 insertions up to four legs (two loops) and three
legs (three loops), respectively.

5
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OA

g, 2

Figure 2: Representative diagrams with the insertion of GV operator 𝑂𝐴 or two-loop GV counterterm
[𝑍𝑂]GV,(2)

𝑔 , they enter the calculations of splitting functions starting from three-loop order.

• Once all GV (counterterm) Feynman rules are obtained, one can derive the four-loop anoma-
lous dimensions with all-𝑛 dependence by inserting [𝑍𝑂]GV,(3)

𝑔 , [𝑍𝑂]GV,(2)
𝑔 , 𝑂𝐴𝐵𝐶 and

(𝑂𝑞, 𝑂𝑔) into all-off-shell matrix elements up to one-loop, two-loop, three-loop, four-loop
order, respectively. Some sample diagrams with the insertion of GV operator 𝑂𝐴 or two-loop
counterterms can be found in fig. 2.

To retain the all-𝑛 dependence when computing the off-shell OMEs, we adopted a generation
function method proposed in [29, 30]. By introducing a tracing parameter 𝑡, the method sums the
non-standard terms like (Δ · 𝑝)𝑛−1, which appear in the Feynman rules of physical operators as well
as GV operators 𝑂𝐴𝐵𝐶 , into linear propagators. For example

(Δ · 𝑝)𝑛−1 →
∞∑︁
𝑛=1

(Δ · 𝑝)𝑛−1𝑡𝑛 =
𝑡

1 − 𝑡Δ · 𝑝 . (14)

Then we work in 𝑡-space throughout, which allows us to perform standard integration-by-parts (IBP)
reductions [31, 32]. The desired 𝑛-space results can be extracted by expanding 𝑡 around 𝑡 = 0 in the
final step. The computational steps of these OMEs follow a standard chain, which involves applying
different techniques like IBP, (canonical) differential equations [33, 34], and several tools like
QGRAF [35], FORM [36], Reduze 2 [37], FeynCalc [38], Apart [39], MultivariateApart [40],
Singular_pfd [41], LiteRed [42], FIRE6 [43], Kira [44], CANONICA [45], Libra [46],
FiniteFlow [47], HarmonicSums [48–53], HPL [54] as well as Finred based on finite field
sampling and rational reconstruction [47, 55, 56].

4. Results

With the above methods, in [27] we extracted the Feynman rules for operators 𝑂𝐴𝐵𝐶 to 𝑔2
𝑠

(four legs), as well as the counterterm Feynman rules for [𝑍𝑂]GV
𝑔 to 𝑎2

𝑠 𝑔𝑠 (three legs), where 𝑎2
𝑠 is

from 𝑍 and 𝑔𝑠 is from 𝑂. Quite recently, the Feynman rules with five legs for 𝑂𝐴𝐵𝐶 were available
in [16, 28].

Like the Feynman rules for physical operators 𝑂𝑞 and 𝑂𝑔, the Feynman rules for the operator
𝑂𝐴𝐵𝐶 also consist of multiple summations without denominators in the kernel, for example,

𝑛−3∑︁
𝑗=0

(Δ · 𝑝1)𝑛−3− 𝑗(Δ · 𝑝2) 𝑗 .

6
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For this reason, it allows us to make use of the trick as shown in eq. (14) to straightforwardly
compute the corresponding OMEs with 𝑂𝐴𝐵𝐶 insertion.

However, the two-loop counterterm Feynman rules with three legs follow a more intricate
structure, involving transcendental functions: harmonic sums [57, 58] and generalized harmonic
sums [59], as a simple example

𝑆1 (𝑧1 + 1; 𝑛) =
𝑛∑︁

𝑥1=1

(1 + 𝑧1)𝑥1

𝑥1
, with 𝑧1 =

Δ · 𝑝2

Δ · 𝑝1
and Δ · 𝑝1 = 1 . (15)

Inserting these terms into the two-point OMEs and summing them according to eq. (14) results in
polylogarithmic functions, which lie beyond the capabilities of current IBP methods. Specifically,
the generalized harmonic sum in eq. (15) is summed into the following logarithmic function

∞∑︁
𝑛=1

𝑡𝑛𝑆1 (𝑧1 + 1; 𝑛) =
log (1 − 𝑡(1 + 𝑧1))

−1 + 𝑡
. (16)

For higher transcendentality-weight generalized harmonic sums, one gets higher transcendentality-
weight polylogarithmic functions. An interesting fact is that the generalized harmonic sums collapse
into polynomial functions for fixed moments, for example,

𝑆1(𝑧1 + 1; 2) =
𝑧2

1
2

+ 2𝑧1 +
3
2
,

𝑆1(𝑧1 + 1; 4) =
𝑧4

1
4

+
4𝑧3

1
3

+ 3𝑧2
1 + 4𝑧1 +

25
12

. (17)

The above fact implies that one can rewrite the generalized harmonic sums as the following form

𝑆1(𝑧1 + 1; 𝑛) =
𝑛∑︁

𝑚=1
𝑎𝑚𝑛 𝑧

𝑚
1 (18)

with 𝑎𝑚𝑛 being some rational numbers. The above equation also works directly for higher
transcendentality-weight generalized harmonic sums. To overcome the difficulty of performing
IBP reductions for OMEs with the insertion of generalized harmonic sums depending on 𝑧1, we
introduce an additional tracing parameter 𝑡1, such that

ℎ(𝑡, 𝑡1) =
∞∑︁
𝑛=1

𝑡𝑛
𝑛∑︁

𝑚=1
𝑡𝑚1 𝑧𝑚1 =

𝑡 𝑡1 𝑧1

(1 − 𝑡) (1 − 𝑡 𝑡1 𝑧1)
. (19)

Now it’s straightforward to perform IBP reductions with the above linear propagators insertion, and
the differential equation method can be used to expand 𝑡 to very high powers for corresponding
OMEs, for example,

⟨𝑔 |ℎ(𝑡, 𝑡1)|𝑔⟩(1) =
∞∑︁
𝑛=1

𝑡𝑛
𝑛∑︁

𝑚=1
𝑐𝑚𝑛 𝑡

𝑚
1 . (20)

Similarly with 𝑎𝑚𝑛 in eq. (18), 𝑐𝑚𝑛 above is also rational numbers. Combing eqs. (18), (19), (20),
we have

⟨𝑔 |𝑆1(𝑧1 + 1; 𝑛)|𝑔⟩(1) =
𝑛∑︁

𝑚=1
𝑎𝑚𝑛 𝑐𝑚𝑛 . (21)

7
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Figure 3: Representative diagrams for the 𝑁 𝑓 𝐶
3
𝐹

contribution to the four-loop, non-singlet OME with two
external quarks. The crossed circle denotes the non-singlet operator 𝑂ns.

Oq

Oq

Figure 4: Representative diagrams for 𝑁2
𝑓

contributions to ⟨𝑞 |𝑂B
𝑞 |𝑞⟩ at four-loop order. The first diagram

contributes to the non-singlet anomalous dimension, while the second one contributes to the pure-singlet
anomalous dimension.

Therefore, the computations of off-shell OMEs with generalized harmonic sums insertion or two-
loop counterterm operator insertion are converted into a linear algebra problem. Above, we
discussed the generalized harmonic sums with a singlet variable dependence (𝑧1). The method
can also be easily generalized to the case with multiple variables dependence. For example, if the
generalized harmonic sums depend on two variables 𝑧1, 𝑧2, then two additional tracing parameters
𝑡1, 𝑡2 are sufficient to sum them into linear propagators. In practice, we applied the above method
to compute the one-loop OMEs with two-loop counterterm Feynman rules insertion to 𝑛 = 500 and
reconstruct the final result with all-𝑛 dependence in terms of harmonic sums. A sample Feynman
diagram can be found in fig. 2 (the second diagram).

With all the above tricks, we can compute all required off-shell OMEs in principle. In the
non-singlet sector, the GV operators (counterterms) are absent, and the first three-loop calculations
from off-shell OMEs were given in [60]. We repeated the calculation in our notation in [27]
and found full agreement with them. In [14], we derived the 𝑁 𝑓 𝐶

3
𝐹

contribution to non-singlet
splitting functions at four-loop order for the first time. Some sample Feynman diagrams are shown
in Fig. 3. We successfully checked our results with fixed moments to 𝑛 = 16 [7]. In the singlet
sector, we computed the unpolarized three-loop off-shell OMEs with all-𝑛 dependence for the first
time, the extracted splitting functions agree with the results [61, 62] derived from forward deep
inelastic scattering. In [8], we determined the four-loop pure-singlet splitting functions with 𝑁2

𝑓

color structure for the first time. Some sample Feynman diagrams can be found in fig 4. We
cross-validated this result against the fixed-𝑛 results up to 𝑛 = 20 in [10].
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5. Conclusions

In the renormalization of off-shell OMEs with a twist-two operator insertion, the physical
operators 𝑂𝑞 and 𝑂𝑔 mix with the previously unidentified GV operators. We proposed a systematic
framework to extract the all-𝑛 counterterm Feynman rules associated with these GV counterterm
operators. Within this framework, we identified all OMEs necessary for deriving the four-loop
splitting functions and discussed their computations. Using the off-shell OME method, we have
employed several techniques to obtain, for the first time, the three-loop unpolarized singlet, the four-
loop 𝑁2

𝑓
contributions to the pure-singlet, and the four-loop 𝑁 𝑓 𝐶

3
𝐹

contributions to the non-singlet
splitting functions.
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