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Pole decomposition of BFKL eigenvalue
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We discuss the pole structure of the BFKL equation in the complex angular momentum plane.
We argue that beyond the leading order, the proper framework for the BFKL dynamics is the
Bethe–Salpeter equation. The Bethe–Salpeter equation was derived for describing evolution of
the bound states and can provide a natural framework for the propagation of the bound state of
two reggeized gluons. The Bethe–Salpeter approach to the BFKL dynamics sheds light on the
internal structure of the BFKL eigenvalue beyond the leading order revealing the way the BFKL
kernel with hermitian separability can result into the higher-order BFKL eigenvalue, where the
hermitian separability is absent.
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The Balitsky-Fadin-Kuraev-Lipatov (BFKL) [1] equation can be written in the form of the
linear Schrödinger equation

𝐻𝜓 = 𝐸𝜓 (1)

where 𝐻 is the BFKL Hamiltonian, 𝜓 is the eigenfunction and 𝐸 is the BFKL eigenvalue related
to the pomeron intercept. The eigenfunction 𝜓 is a complex function of the transverse angular
momentum or its canonical conjugate. The BFKL eigenvalue depends on two real valued degrees
of freedom, the anomalous dimension 𝜈 and the conformal spin 𝑛 that are introduced as the Mellin
transform of the complex transverse momentum. It is convenient to introduce the complex variable

𝑧 = −1
2
+ 𝑖𝜈 + 𝑛

2
(2)

for continuous 𝜈 and discrete 𝑛. The term − 1
2 reflects the wave function normalization condition

for the color singlet BFKL equation.
The full analytic expression for the color singlet BFKL eigenvalue in QCD and 𝑁 = 4 SYM is

currently available only for the leading order (LO) and next-to-leading order (NLO) [2–5]. There
is also some information available for the next-to-next-to-leading order (NNLO) in the 𝑁 = 4
SYM, which follows from modern integrability techniques 1. A useful property of the hermitian
separability of the BFKL eigenvalue was first discussed by A. Kotikov and L. Lipatov [4, 5]. The
property of the hermitian separability implies a way of writing a function of complex variable 𝑧 and
the complex conjugate 𝑧 as a sum two contributions separately dependent on 𝑧 and 𝑧

𝑓 (𝑧, 𝑧) = 𝐹 (𝑧) + 𝐹 (𝑧) (3)

The property of the hermitian separability is less restrictive than the holomorphic separability as
we discuss below. In eq. (3) the real function 𝐹 is the same function for 𝑧 and 𝑧, which results in
the real valued 𝑓 (𝑧, 𝑧) and helps to reduce related two-dimensional calculations to a much simpler
one-dimensional problem. For the BFKL eigenvalue the function 𝐹 (𝑧) is the single valued function
of complex variable so that 𝑓 (𝑧, 𝑧) is always real for any value of 𝑧.

In the singlet color case the leading order BFKL eigenvalue is manifestly hermitian separable,
whereas the next-to-leading eigenvalue [2] is not. It was demonstrated by A. Kotikov and L. Lipa-
tov [4, 5] that color singlet NLO eigenvalue in 𝑁 = 4 SYM can be written as a combination of a
product of two hermitian separable functions and a hermitian separable function

𝑓 𝑁𝐿𝑂 (𝑧, 𝑧) = 𝑓 𝐿𝑂 (𝑧, 𝑧)𝑔(𝑧, 𝑧) + 𝜌(𝑧, 𝑧) (4)

where 𝑓 𝐿𝑂 (𝑧, 𝑧) is the corresponding LO eigenvalue. The function 𝑓 𝐿𝑂, 𝑓 𝑁𝐿𝑂, 𝑔 and 𝜌 all have
hermitian separable form of eq. (3). This non-linearity in eq. (4) has no obvious explanation in
the Schrödinger equation approach to the BFKL dynamics, where the two degrees of freedom
corresponding to the complex variables 𝑧 and 𝑧 are mixed at the level of the Hamiltonian.

Following the lines of A. Kotikov and L. Lipatov [4, 5] it is natural to consider the Bethe-Salpeter
equation with the two degrees of freedom being separated at the level of the kernel. The BFKL

1See the review paper discussing aspects of integrability techniques applied to the BFKL evolution [7]
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dynamics describes the evolution of the bound state of two reggeized gluons. This fact makes
it natural to consider the Bethe-Salpeter equation, which was originally constructed to describe
quantum bound states [8] and has a variety of applications in quantum field theory (positronium,
mesons etc.). The Bethe-Salpeter equation can be schematically represented as follows

𝐺 = 𝐾 ⊗ 𝑆 ⊗ 𝐺 ⊗ 𝑆 (5)

where 𝐺 is the propagator of the bound state under consideration, 𝐾 is the kernel and 𝑆 is the bare
propagator (see Fig. 1).

Figure 1: The figure depicts the structure of the Bethe-Salpeter equation in eq. 5.

In the Bethe-Salpeter approach one can represent the BFKL dynamics as pole decomposition of
the scattering amplitude in the plane of complex angular momentum 𝑗 with the leading singularity
of 𝑗 → 1. It is customary to denote 𝑗 = 1 + 𝜔 and make an expansion in powers of 𝜔, which
gives the leading Pomeron exchange. The leading-order (LO) in 𝛼𝑠 ln 𝑠 corresponds to the simple
pole 1/𝜔 of the BFKL amplitude, the next-to-leading (NLO) contributions includes a free term
(𝜔)0, the next-to-next-to-leading (NNLO) stand for 𝜔1 and so forth. The recursive structure of the
Bethe-Salpeter equation in eq. (5) implies that the sum of all those contributions equals 𝜔 itself.
This can be written as follows [9]

1 =
𝑎

𝜔

∞∑︁
𝑖=0

𝜔𝑖

∞∑︁
𝑘=0

𝑎𝑘 𝑓𝑖,𝑘 , (6)

where 𝑎 =
𝛼𝑠𝑁𝐶

2𝜋 is the coupling constant. The functions 𝑓𝑖,𝑘 are hermitian separable at any order
and reproduce the structure of the next-to-leading eigenvalue making predictions for higher order
corrections to the BFKL eigenvalue. Let us denote the leading order BFKL eigenvalue by

𝜔0 = 𝑎 𝑓 𝐿𝑂 (𝑧, 𝑧), (7)

the next-to-leading order BFKL eigenvalue by

𝜔1 = 𝑎2 𝑓 𝑁𝐿𝑂 (𝑧, 𝑧) (8)
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and so forth. The leading order BFKL eigenvalue in 𝑁 = 4 SYM is rather simple

𝑓 𝐿𝑂 (𝑧, 𝑧) = 4 (−𝜓(𝑧 + 1) − 𝜓(𝑧 + 1) + 2𝜓(1)) (9)

and the corresponding known NLO expression reads [4, 5]

𝑓 𝑁𝐿𝑂 (𝑧, 𝑧) = Φ(𝑧 + 1) +Φ(𝑧 + 1) − 1
2
𝑓 𝐿𝑂 (𝑧, 𝑧)

(
𝛽′(𝑧 + 1) + 𝛽′(𝑧 + 1) + 𝜋

2

6

)
,

where

𝛽′(𝑧) =
∞∑︁
𝑟=0

(−1)𝑟+1

(𝑧 + 𝑟)2 (10)

and

Φ(𝑧) = 3𝜁 (3) + 𝜓′′ (𝑧) + 2Φ2(𝑧) + 2𝛽′(𝑧) (𝜓(1) − 𝜓(𝑧)) . (11)

as well as

Φ2(𝑧) =
∞∑︁
𝑘=0

𝛽′(𝑘 + 1) + (−1)𝑘𝜓′(𝑘 + 1)
𝑘 + 𝑧 −

∞∑︁
𝑘=0

(−1)𝑘 (𝜓(𝑘 + 1) − 𝜓(1))
(𝑘 + 𝑧)2 (12)

We limit ourselves by the next-to-next-to-leading (NNLO) order in eq. (6) and get

1 =
𝑎( 𝑓0,0 + 𝑎 𝑓0,1 + 𝑎2 𝑓0,2)

𝜔
+ 𝑎( 𝑓1,0 + 𝑎 𝑓1,1) + 𝑎𝜔 𝑓2,0 (13)

Next, we plug

𝜔 = 𝑎( 𝑓 𝐿𝑂 + 𝑎 𝑓 𝑁𝐿𝑂 + 𝑎2 𝑓 𝑁𝑁𝐿𝑂 + ..) (14)

and expand it in the powers of the coupling constant obtaining the first three orders in the perturbation
theory as follows. The LO eigenvalue

𝜔0 = 𝑎 𝑓0,0 (15)

the NLO eigenvalue of order 𝑎2

𝜔1 = 𝑎
(
𝜔0 𝑓1,0 + 𝑎 𝑓0,1

)
= 𝑎2 ( 𝑓0,0 𝑓1,0 + 𝑓0,1

)
(16)

and finally the NNLO eigenvalue of order 𝑎3.

𝜔2 = 𝑎

(
𝜔2

0 𝑓2,0 + 𝑎𝜔0 𝑓1,1 + 𝜔1 𝑓1,0 + 𝑎2 𝑓0,2

)
(17)

= 𝑎3
(
𝑓 2
0,0 𝑓2,0 + 𝑓0,0 𝑓1,1 + 𝑓0,0 𝑓

2
1,0 + 𝑓1,0 𝑓0,1 + 𝑓0,2

)
At the NNLO level the function 𝜔2 is expressed in terms of three unknown functions 𝑓1,1, 𝑓0,2 and
𝑓2,0. The functions 𝑓0,0, 𝑓0,1 and 𝑓1,0 are known from the previous orders. The functions 𝑓𝑖, 𝑗 are
single valued meromorphic functions each having a property of the hermitian separability . The
complexity of 𝑓𝑖, 𝑗 can be related to the concept of transcendentality and a number of the nested
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summations. The transcendentality corresponds to the weight of the nested harmonic sums and the
number of the nested summations stands for their depth.

The harmonic sums are defined through a nested summation with their argument being the
upper limit in the outermost sum [10, 11]

𝑆𝑎1,𝑎2,...,𝑎𝑘
(𝑛) =

∑︁
𝑛≥𝑖1≥𝑖2≥...≥𝑖𝑘≥1

sign(𝑎1)𝑖1

𝑖
|𝑎1 |
1

...
sign(𝑎𝑘)𝑖𝑘

𝑖
|𝑎𝑘 |
𝑘

, 𝑛 ∈ N∗ (18)

where 𝑎𝑖 are integers, which build the alphabet of the possible negative and positive indices. In
Eq. (18) 𝑘 is the depth and 𝑤 =

∑𝑘
𝑖=1 |𝑎𝑖 | is the weight of the harmonic sum 𝑆𝑎1,𝑎2,...,𝑎𝑘

(𝑛).
The nested harmonic sums are rich of identities between the sums of the same or multiple argu-
ments (quasi-shuffle identity etc.). The argument of the nested harmonic sums is a natural number
and they require analytic continuation to the complex plane in order to be used for calculations of
the BFKL eigenvalue. The analytic continuation can be done using the integral representation as
Mellin transform of Harmonic Polylogarithms. After analytic continuation, the nested harmonic
sums are a single valued analytic functions with having pole singularities at negative integers. For
example, the simplest harmonic sum 𝑆1(𝑛) after analytic continuation for 𝑛 → 𝑧 corresponds to
𝜓(𝑧 + 1) − 𝜓(1), where 𝜓(𝑧) is the digamma function defined by 𝜓(𝑧) = Γ′ (𝑧)

Γ (𝑧) .
According to the Bethe-Salpeter form of the BFKL equation in eq. (6), the BFKL eigenvalue

is constructed of functions 𝑓𝑖, 𝑗 that individually have property of hermitian separability, but their
products do not. The decomposition of the products for any given 𝑛 can be done using reflec-
tion identities of the nested harmonic sums [12–17] . The reflection identities are of the form
𝑆𝑎 (𝑧)𝑆𝑏 (−1 − 𝑧) = 𝑆𝑐 (𝑧) + 𝑆𝑑 (−1 − 𝑧) + constants and they are useful for restoring the full
dependence of the BFKL eigenvalue on 𝑛 from a corresponding results for specific values of the
conformal spin.
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