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A particle is an excellent tool for probing spin effects due to its self-analyzing weak decay. We
study the longitudinally polarized A production in semi-inclusive deep inelastic scattering. In
particular, we propose a method based on the spectator diquark model to directly calculate the
contributions from the target fragmentation region. The results indicate that these contributions
significantly suppress the longitudinal spin transfer to A from the current fragmentation region,
thereby describing the experimental data from COMPASS, HERMES and CLAS12 quite well.
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1. Introduction

A polarization measurements can be used to investigate the spin structure of the target nucleons
in semi-inclusive deep inelastic scattering (SIDIS) process [1]. The challenge is that, in existing
fixed-target experiments, such as COMPASS, HERMES, and CLAS12, the boundary distinguishing
the current fragmentation region (CFR) and target fragmentation region (TFR) for the hadron
production is blurred. In addition to the traditional research on the CFR, we consider the contribution
of the TFR to the spin transfer to A. We perform an estimation based on the spectator diquark
model to quantitatively demonstrate the TFR contribution and compare it with experimental data
from COMPASS [2], HERMES [3, 4], and CLAS12 [5]. This study diversifies SIDIS processes
that can probe the fracture functions, providing a complementary perspective in this field.

2. Longitudinal spin transfer in current and target fragmentation regions

We consider the SIDIS process of producing a longitudinally polarized A or A hyperon
from a longitudinally polarized lepton and an unpolarized target, denoted as /(¢,1.) + p(P) —
1(¢") + A/A(Py, A3) + X. The differential cross section can be expressed as

do (e, An) 4ral,  y? 2
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dxdydzd?P,,  xyQ? 2(1 —¢) 2y (fuU tAedn efyr (1)

where F is the structure function with the subscripts specifying the polarizations of the target and

final-state hadron. Here we choose y*N collinear frame, and L and L denote the transverse and
longitudinal components of a vector, respectively.

In principle, final-state hadrons can be generated in two kinematic regions: from the scattered
quark fragmentation in the CFR, and from the nucleon target remnants fragmentation in the TFR.
In other words, the cross section can be divided into two parts, o = o CFR + o TFR_ At very high
center-of-mass energy, the hadrons produced by the quark that struck by the virtual photon and
those produced by the remnants of the nucleon should move in opposite directions, as shown in
the simple schematic diagram in Fig. 1. However, when photon has a relatively small transverse
momentum ¢, the hadron may not continue to move along the direction of the virtual photon,
making the boundaries between CFR and TFR become blurred. We need to consider both of these
two fragmentation regions.

Focusing on the longitudinal spin transfer DI’iL from the lepton to the A/A hyperon, we
can express it as the ratio of the structure functions. This can be further expanded into the
transverse momentum dependent (TMD) parton distribution function (PDF) fi,, unpolarized and
longitudinally polarized TMD fragmentation function (FF) Di’q and G{‘Lq in the CFR [6], and
Py, , -dependent fracture functions M g‘ and AM z‘q in the TFR [7], respectively,
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Here I [f,D}] = ¥, el [ d*p,d®k 6% (zp, + ki — Ppi)xfy(x, p1:Q)DA(z. k1: Q). with p
and k , being the transverse momenta of the quark. ¢ is the longitudinal momentum fraction carried
by the produced hadron in TFR.
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Figure 1: Semi-inclusive production of the hadron Figure 2: The lowest-order diagram of the target
h in current and target fragmentation regions. fragmentation process in the diquark model.

3. Numerical result and discussion

The spin transfer is a direct experimental observable in COMPASS [2], HERMES [3, 4],
and CLASI12 [5], and we can examine Dz ,, on the x, and Feynman variable xr dependencies.
For the TMD PDF and FFs, some parametrization schemes on market can be used. However,
the fracture functions are in general less studied due to the scarcity of experimental data. We
calculate it in the spectator diquark model, which includes both the spin-0 (scalar) or spin-1 (axial-
vector) spectator systems [8]. The fragmentation process is modeled as p (uud) — u + R(ud) and
R(ud) — A(uds) + 5, as shown in Fig. 2, where only a scalar diquark R(ud) survives according to
the SU(6) wave function of A hyperon. This implies that the polarized fracture functions including
AM}, in Eq. (2) are zero.

In the spectator diquark model, the matrix element can be written in this form,

i
(P=p)2-Mip—m

(Ph,Sn; k¢l (0)|P,S) = U(Py, Sp)Yov(ky) Y, U(P,S), 3)
where U(P,S), U(Py, Sy) and v(k ) are the Dirac spinors of the corresponding particles. The
symbols m and M, are the masses of the quark and the diquark, respectively. Y; = g;1 is the
hadron-quark-diquark vertex with g; being a Gaussian form factor [9]. By inserting Eq. (3) into the
fracture correlator which is given in Ref. [7], we can obtain the unpolarized fracture function M,
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= 4
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We fit the model calculation of fi, with the JR14 parametrization [10] to determine the diquark
model parameters, which result in,

myq =0.3GeV, mg =0.5GeV, My =1.2GeV, Ay =2.3GeV, g, =14.98. 5)

By integrating Eq. (2) over Py, , the Dg ; considering both the CFR and the TFR can be written
as
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For the TMDs in the CFR, we take the Gaussian ansatz which was widely used,

Pl _k K7
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where A%, =0.57GeV? and A%l = 0.118 GeV? represent Gaussian widths of a protonanda A [12, 13].
For the collinear FFs, Di‘q(z) and G", q(z), we employ the DSV parametrization [11]. Tt is fitted
to data from e*e™ annihilation, which should describe the CFR results well. In Fig. 3(a)-3(b) we
plot the numerical results for Dz , comparing with the COMPASS data [2].  Producing the A
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Figure 3: Numerical results for the longitudinal spin transfer comparing with experimental data.

from TFR in the diquark model is challenging due to the difficulty in finding a diquark spectator
R(iid) from the sea, so the contribution of the TFR is neglected, i.e., Mf;\ = 0. The dashed-
dotted curves represent the A theoretical calculations using the DSV parametrization, and it can
describe the experimental data relatively well considering the large uncertainties. However, for A,
the contribution from only the CFR leads to significant deviations from the experimental data, as
shown by the dashed curves. This agrees with our expectations, indicating that the contribution
from the TFR cannot be ignored. With the model-calculated values of M2, the calculation results
show good consistence with the measurements. Similar figures for D/L\ ,, are shown in Fig. 3(¢c)-3(d)
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to compare the theoretical estimation with HERMES [4] and CLAS12 [5] measurements. Again
there are significant deviations between the CFR contribution and the measurements. The inclusion
of the TFR contribution remarkably reduces the predicted value, and the combined contributions
from both the CFR and TFR match the data much better than the CFR contribution alone. Based
on the discussions and comparisons of these results, it can be reasonably concluded that in current
medium- and low-energy experiments, the contribution of target fragmentation for the A in the
SIDIS process cannot be ignored.

4. Summary and outlook

In this proceeding, we conduct numerical calculations on the two fragmentation mechanisms
in SIDIS focusing on the longitudinal spin transfer of A and A. Incorporating the fracture functions
alongside the CFR can describe the experimental data from COMPASS, HERMES, and CLAS12
quite well. We anticipate new and precise experimental measurements at the future EIC of A and A
production in both the CFR and TFR, to further study and understand the fragmentation mechanism.
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