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1. Introduction

The proton structure in terms of parton distributions (PDFs) is known to the level of a few
percent [1–3] for the case of unpolarized PDFs. These describe the momentum distribution among
its partonic constitutents: quarks and gluons. If the proton is spin-polairzed, one can also define
polarized PDFs, which describe difference of momentum distributions of partons with spin aligned
and anti-aligned with the proton spin. With much less data available on high-energy collisions
involving polarized protons [4], the knowledge on polarized PDFs is considerable less precise on
their unpolarized counterparts, see e.g. [5]. This experimental bottleneck promises to finally be
overcome with the upcoming Electron-Ion Collider (EIC) at BNL [6, 7], which will measure a
multitude of polarized observables to high statistical precision. The upcoming EIC dataset calls
for substantial improvements to theory predictions for polarized observables, to avoid that physics
studies with EIC data will become limited by theory uncertainties.

The theory description of spin effects introduces anti-symmetric structures like the W5 matrix
and Levi-Civita tensors into the calculation, which are inconsistent objects in dimensional regular-
ization in 3 = 4−2Y ≠ 4 dimensions. Several prescriptions were put forward to fix this inconsistency
[8–11], but often they severely obstruct the calculation of cross sections. From a practical point of
view, the Larin scheme [11] appears to be best-suited for higher order perturbative calculations. It
merely increases the algebraic complexity of the calculations, but in turn breaks the axial current
Ward identities, which need to be restored by appropriate renormalization.

Inclusive results for polarized deep-inelastic scattering (DIS) at NNLO have been available for
decades [12], while less inclusive observables at NNLO for fragmentation [13, 14] and single jet
production [15, 16] are only emerging recently. The former could still be integrated analytically,
whereas the latter require the use of numerical integration techniques, based on the Projection-to-
Born method [17] combined with dipole subtraction [18]. For even more involved jet observables at
NNLO, a general NNLO subtraction scheme for polarized processes has yet to be formulated. For
doing that, full knowledge of the IR structure in tree-level double-unresolved and one-loop corrected
single-unresolved limits of generic polarized matrix elements is required.

Subtraction schemes rely on the factorization of the real-radiation matrix element in the in-
frared singular limits into a universal object called the splitting amplitude for collinear limits, or
eikonal factor in the soft limit. It is a priori unclear if such a factorization also exists for polarized
matrix elements. From the analysis of DIS-like tree-level real radiation matrix elements with up
to five partons, we present convincing evidence for factorization: we are able to extract the univer-
sal splitting amplitudes and formulate systematic rules for the factorization of polarized tree-level
matrix elements in a consistent W5 scheme at NNLO.

In section 2 we outline the general method for obtaining infrared limits from matrix elements.
In sections 3 and 4 we describe the singular limits present in tree-level matrix elements up to NNLO,
and comment in detail on how factorization of the matrix element is obtained.

2. Method

The unpolarized quark-initiated triple-collinear splitting amplitudes were first extracted from
the tree-level matrix element for W∗ → 4 partons, and checked numerically against the factorization
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of matrix element W∗ → 5 partons with one additional real emission. The latter also granted access
to gluon-initiated triple-collinear splitting amplitudes [19].

A generic proof of factorization for =-parton splitting amplitudes, which also contained a
straightforward method for the calculation of splitting amplitudes, was provided subsequently [20].
It also captured the azimuthal terms, and provided a straightforward method for the calculation of
general <-parton splitting amplitudes. After azimuthal averaging [21] the triple-collinear splitting
amplitudes of [19] are recovered.

Although such a constructive proof would be desirable, this approach fails in case of polarized
splitting amplitudes due to the intricacy of correctly parametrizing off-shell internal polarized par-
tonic currents. Instead, we here resort to the extraction from the unintegrated tree-level contributions
to the (crossed) 61 coefficient function with W∗ → = partons, cf. [12], as well as the graviton-initiated
61 contributions with �∗ → = partons [22–24], with = = 3, 4 for single- and double-unresolved lim-
its respectively. Only massless partons are considered. For a consistent treatment of W5 we use the
Larin scheme [11].

The inclusion of graviton matrix elements allows also for a check for polarized gluon-initiated
splitting amplitudes at one order higher, which would otherwise only be available with an additional
radiation in photon matrix elements. We check the limits obtained this way up to = = 5 for the
photon and = = 4 for the graviton decay, obtaining analytical factorization in each single- and
double-unresolved limit.

Analytical factorization is finally achieved by recasting the analytical expression of the limit
into a unique form, obtained by either factorizing the ensuing rational functions, or by partial frac-
tion decomposition with help of the Leĭnartas decomposition [25, 26] in FORM 4 [27].

For = = 3, 4 we also determine the limits for an initial-state polarized parton with momentum
parametrizations different from the ones presented here, retaining the results from the all-final case
multiplied by a universal Jacobian factor and trivial factors depending on the crossed particle.

3. Single-unresolved limits

Single-unresolved limits are present in any tree-level DIS-like matrix element with parton mul-
tiplicity = ≥ 3. In this section we describe the universal structures arising in the single-unresolved
limit of tree-level matrix elements. They are extracted from the case = = 3, where apart from the
collinear momentum fraction I there is only one kinematic scale @2 = (?1 + ?2 + ?3)2, making fac-
torization trivial. The singular limits are then reproduced for multiplicities = = 4 and = = 5, where
the factorization is non-trivial, providing a strong check. Since the tree-level matrix elements are
singular objects in the unresolved regions of the phase space, subleading terms in the dimensional
regularization parameter Y in 3 = 4 − 2Y dimensions must be retained.

Let us consider two massless momenta ?8 , ? 9 , and o = ∠( ®?8 , ®? 9). A propagator 1/B8 9 is then
written as

1
B8 9

=
1

�8� 9 (1 − cos o) . (1)

In this form it is apparent that the propagator becomes divergent when either �8 , � 9 → 0 (Sec. 3.1),
or in the limits o → 0, o → c (Sec. 3.2). Due to gauge invariance, only single poles in a single
invariant may develop in the final result, whereas higher poles are always spurious.
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3.1 Single-soft limits

The single-soft limit is kinematically non-trivial for gluons only. It is obtained by rescaling the
gluon momentum by ? 9 → _? 9 and taking the limit _ → 0. An < + 1 parton matrix element with
gluon 9 unpolarized then factorizes down to an <-parton matrix element and an eikonal factor,���(Δ)M (0)

<+1(?1, . . . , ?8 , _? 9 , ?: , . . . , ?<+1)
���2

_→0−→ 4cUB

1
_2

2B8:
B8 9 B 9:

���(Δ)M (0)
< (?1, . . . , ?8 , ?: , . . . , ?<+1)

���2 + O (
_0) , (2)

where B81...8: = (?81 + · · · + ?8: )2. If gluon 9 is polarized, the matrix element remains non-singular
in the soft limit. This behaviour relates to the non-singular limit I → 0 in Δ%6@ (I) and Δ%66 (I) in
Eq. (8) below, which is singular in the unpolarized splitting amplitude.

3.2 Single-collinear limits

The single-collinear limit between partons 8, 9 is understood in a light cone parametrization of
their momenta,

?
`

8
=I?` + :`

)
−

:2
)

2I
=`

= · ? , ?
`

9
=(1 − I)?` − :

`

)
−

:2
)

2(1 − I)
=`

= · ? , (3)

in the limit where the transverse momentum :) tends to zero, and where

?2 = 0 = =2, :2
) < 0, ? · :) = 0 = = · :) , = · ? ≠ 0. (4)

After insertion of the light cone parametrization inside a matrix element, a dependence on
the transverse momentum :) may remain, either in terms of angular correlations, e.g. :

`

)
:a
)
, or

contracted with scalar products. However, as :) is entirely unresolved in the limit considered, it
needs to be integrated over. Therefore we can make a tensor basis ansatz, whose solution is given
by ∫

di :
`

)
(i) = 0,∫

di :
`

)
(i):a) (i) =

:2
)

3 − 2

(
−6`a + ?`=a + ?a=`

? · =

)
. (5)

Notice that only symmetric tensor structures are allowed here. The matrix element then factorizes
in the collinear limit between 8 and 9 into���(Δ)M (0)

<+1(?1, . . . , ?8 , ? 9 , . . . ?<+1)
���2 8 ‖ 9
−→ 4cUB

P8 9←0 (I)
B8 9

| (Δ)M (0)
< (?1, . . . , ?, . . . , ?<+1) |2

+ O(:0
) ) (6)

where P8 9←0 (I) is to be read as P8 9←0 (I) if 8 and 9 are unpolarized particles, and as PΔ8 9←0 (I)
if 8 is polarized. In the latter case, the merged particle 0 with momentum ? in the reduced matrix
elementM0

< is also polarized. Here, 0 denotes the particle initiating the splitting.
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The full set of tree-level single-collinear splitting amplitudes in polarized processes is given
by

P(Δ)@ 6←@ = ��%(Δ)@ 6←@, P(Δ)6 @←@ = ��%(Δ)6 @←@,

P(Δ)@ @←6 = )'%(Δ)@ @←6, P(Δ)6 6←6 = ��%(Δ)6 6←6, (7)

with the color-stripped splitting amplitudes defined as

%@6←@ (I) =
1 + I2

1 − I
− (1 − I)Y, %Δ@ 6←@ (I) =

1 + I2

1 − I
+ (1 − I) Y(3 + Y)

1 − Y ,

%6@←@ (I) =
1 + (1 − I)2

I
− IY, %Δ6 @←@ (I) =

2 − I(1 + Y)
1 − Y ,

%@@←6 (I) = 1 − 2
I(1 − I)
1 − Y , %Δ@ @←6 (I) = 1 − 2

1 − I

1 − Y ,

%66←6 (I) = 2I(1 − I) + 2
1 − I

+ 2
I
− 4, %Δ6 6←6 (I) =

2
1 − I

− 2 + 4
1 − I

1 − Y . (8)

Here, quarks may also be exchanged by antiquarks. We notice the genuinely different structure if a
polarized particle is involved in the splitting.

The tree-level single-collinear splitting amplitudes P8 9 are given by the unregulated real radi-
ation part of the corresponding NLO Altarelli-Parisi evolution kernel Δ%80 [28] and an evanescent
Y-dependent term. The latter depends on the scheme choice for W5. This becomes apparent for the

non-singlet splitting %Δ@ 6←@ (I) =
1 + I2

1 − I
+ 3(1 − I)Y + O(Y2) by considering the finite scheme

transformation required to get from the Larin scheme to MS [29], fixing the axial Ward identity and
restoring helicity conservation along the polarized quark line, after which %Δ@ 6←@ takes the form
of %@6←@.

4. Double-unresolved limits

Due to the more involved singular structure in the case of the double-unresolved limits appear-
ing in the double-real radiation part at NNLO, we resort to color-ordered matrix elements as in [19],
containing singular limits only between color-adjacent particles [30–33]. Note that the insertion of
a colorless particle into the amplitude does not modify the color structure, independent of where
it couples. In the context of color-ordered amplitudes the notion of abelian gluons is introduced,
referring to unordered gluons, which can be color-adjacent only to quarks but not to gluons.

4.1 Double-soft limits

We parametrize the two momenta ?8 , ? 9 as in the single-soft case by rescaling with a parame-
ter _. The double-soft limit is then realized in the limit _→ 0.

In the case of color-unconnected particles, the matrix element factorizes into two separate
eikonal factors. For color-connected particles, we distinguish three cases: two soft non-abelian
gluons, two soft abelian gluons, and two soft quarks. We recover the limits quoted in [34] if neither
soft particle is polarized.

As before, if a polarized particle becomes soft the matrix element does not develop a singularity.
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4.2 Double-collinear limits

If the parton momentum ?8 becomes collinear to ? 9 , and ?: becomes collinear to ?;, the matrix
element factorizes into two separate single-collinear splitting amplitudes.

4.3 Triple-collinear limits

In the triple-collinear case, where a cluster of three particles becomes collinear, we employ the
light-cone parametrization

?
`

8
= I8?

` + :`
),8
−

:2
),8

2I8
=`

= · ? . (9)

As discussed in [21], the relations

I1 + I2 + I3 = 1,
3∑
8=1

:),8 = 0 (10)

hold. With a similar power counting as before, this time discarding terms of O(:−3
)
) and less sin-

gular, we find a residual transverse momentum dependence of the form {:`
),8

, :
`

),8
:a
),8

, :
`

),8
:a
), 9
}.

The first and second case are as in Eq. (5). In the third case, however, the tensor ansatz changes to∫
dq8 9 :`),8:

a
), 9 = �6`a + �?`?a + �=a=` + �?`=a + �=`?a + �Y`adf

?d=f

? · = , (11)

where q8 9 = ∠(:),8 , :), 9). It turns out that the symmetric part
∫

dq8 9 : (`),8:
a)
), 9

takes the overall
form of Eq. (5), ∫

di :
(`
),8
(i):a)

), 9
(i) =

√
:2
),8

:2
), 9

3 − 2

(
−6`a + ?`=a + ?a=`

? · =

)
, (12)

and gives rise to an angular dependence proportional to cos(2q8 9) in 4-dimensions. The anti-
symmetric counterpart is found to have a sin(2q8 9) dependence of the opening angle between the
collinear partons, and its coefficient � is regularization scheme dependent. Note that the two struc-
tures are mutually orthogonal to each other. However, while it is in principle allowed, we find that
the antisymmetric part is not realized in the tree-level matrix elements required up to di-jet produc-
tion at NNLO.

After the angular averaging, our matrix elements factorize according to

| (Δ)M<+2(?1, . . . , ?8 , ? 9 , ?: , . . . , ?<+2) |2

8 ‖ 9
−→ (4cUB)2

1
B2
8 9:

P8 9: (I8 , I 9 , I: , B8 9 , B8: , B 9:) × |M<(?1, . . . , ?, . . . , ?<+2) |2 + O
(

1
:2
)

)
,

(13)

whereP8 9:←0 denotes the color-ordered triple-collinear splitting amplitude. In the unpolarized case
there are 7 independent triple collinear splitting amplitudes [19, 21],

%666←6, %@66←@, %@WW←@, %6@@̄←6, %W@@̄←6, %@@̄′@′←@, %@@̄@←@ .
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The polarized case is found to contain 16 additional independent splitting amplitudes, where one of
the particles is polarized, indicated by a subscript Δ:

%Δ@ 6 6←@, %Δ@ W W←@, %Δ6 6 @←@, %6Δ6 @←@, %ΔW W @←@, %Δ@ @′ @̄′←@, %Δ@′ @̄′@←@, %Δ@ @̄ @←@,

%Δ@̄ @ @←@, %Δ6 6 6←6, %6Δ6 6←6, %6Δ@ @̄←6, %Δ@ @̄ 6←6, %Δ@ @̄ W←6, %Δ6 @ @̄←6, %ΔW @ @̄←6 .

For sake of abbreviation, they are denoted by P123→8 (I1, I2, I3, B12, B13, B23) = %8 9:←0, where 8, 9 , :
refer to the particle types of the clustered particles 1, 2, 3, and 0 is the type of the splitting particle.
In this notation W stands for an abelian gluon. By convention, triple-collinear splitting amplitudes
are given in the literature with all particles in the final state, cf. Eq. (9).

Notice the different ordering of the clustered particles, arising from the breaking of symme-
try between a 66 or a @@̄ pair within the cluster, where either particle of the pair is polarized: in
%Δ6 6 @←@ the unpolarized gluon is color-adjacent to the quark, whereas in %6Δ6 @←@ the polarized
gluon is. In %6Δ6 6←6, the polarized gluon is sandwiched between the two unpolarized gluons,
which are symmetric under exchange, but in %Δ6 6 6←6 it is adjacent to only one particular, break-
ing the symmetry. In %6Δ@ @̄←6, the gluon is adjacent to the polarized quark and color-unconnected
to the antiquark, and oppositely in %Δ@ @̄ 6←6.

While triple-collinear splitting amplitudes are genuinely double-unresolved structures, they
also contain iterated single-unresolved structures [35]. To make this manifest, let us consider the
triple-collinear splitting of a polarized quark into a polarized quark and two gluons,

%Δ@ 6 6←@ = + 1
B23B123

[
%Δ@ 6←@ (I1) %66←6

(
I2

1 − I1

)]
+ 1
B12B123

[
%Δ@ 6←@ (1 − I3) %Δ@ 6←@

(
I1

1 − I3

)]
+ 1
B2
123

[
17 + 15I2 + 12Y + 2YI2 + 2Y2

− 1 + 7Y + 13Y2 + 9Y3 + 2Y4

(1 − Y) (1 − 2Y)
1 + I2
I2 + I1

− 17 + 6Y
2

I1 +
2Y + 4Y2 + 2Y3

(1 − Y) (1 − 2Y)
1 − 2I2 + I2

2
I1

− 16Y
1 − 2Y

I2 − I2
2

I3 + I2
− 8

1 − Y [6 + 2I2 − 3I1] +
4 − 4Y
I3 + I2

+ 62 + 2I2 − 31I1
2(1 − 2Y) − 2

2I2 − I2
2

(I2 + I3)2

+ 2
2I2 − I2

2
(I2 + I3)2

Y

]
+ Tr(231;)

B23B
2
123

[
4Y

1 − 2Y
1
I1
− 12Y

1 − 2Y
+ 16Y

1 − 2Y
I2

I3 + I2
− 4 − 4Y
I3 + I2

+ 4
I2

(I2 + I3)2
− 4

I2

(I2 + I3)2
Y

]
+ Tr(123;)

B12B
2
123

[
1 + 7Y + 13Y2 + 9Y3 + 2Y4

(1 − Y) (1 − 2Y)
1

I2 + I1

− 8Y + 4Y2 + 4Y3

(1 − Y) (1 − 2Y) −
1

1 − 2Y
9 − 7I2

I1
+ 16

1 − Y
1 − I2
I1
− 2Y + 7

I1
+ 9

I2
I1
+ 2

I2
I1
Y

]
+ Tr(123;)
B12B23B123

[
1 + 2Y + Y2

1 − Y − 1 + 2Y + Y2

1 − Y
I2
I3
+ 4Y

1 − 2Y
I2
I1
− 8

1 − Y
1 − I1
I2
+ 10 + 2Y

I2

− 6
I1
I2
− 2

I1
I2
Y − I2

I3 + I2
+ I2
I3 + I2

Y − 2
I3 + I2

− 2
I3(I2 + I3)

+ 2
I3
− 4
I2(I2 + I3)

]
+ ,23

B2
23B

2
123

[
− 4Y

1 − 2Y
1
I1
+ 2 − 2Y
(I2 + I3)2

]
+ ,12

B2
12B

2
123

[
− 2Y + 4Y2 + 2Y3

(1 − Y) (1 − 2Y)
1
I1

]
, (14)
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setting Tr(8 9 :;) = I8B 9: − I 9 B8: + I:B8 9 , and

,8 9 = (G8B 9: − G 9 B8:)2 −
2

1 − Y
G8G 9G:

1 − G:
B8 9 B8 9: . (15)

The triple-collinear splitting amplitude is given in the basis proposed in [35], serving to separate
terms that are singular in the single-collinear limit from the remainder, which is regular in the single-
collinear limit. The first two terms display an iterated application of single-collinear splittings, also
making manifest the divergent structure of polarized matrix elements as follows.

The first term describes the part which is also divergent in the sole B23 → 0 limit, encompassing
the splitting of two gluons from a gluon after the splitting of a collinear gluon off a polarized quark.
Since both gluons are unpolarized, also the corresponding gluonic splitting is unpolarized, and the
polarization is fully contained in the polarized <+1 parton matrix element, which in turn factorizes
down to a polarized splitting amplitude and a polarized < parton matrix element with polarized
clustered momentum ?.

The second term represents the radiation of the unpolarized gluon ?2 off a polarized quark
with clustered momentum ?12, and then a subsequent radiation of the unpolarized gluon ?3 off the
polarized clustered quark (12), where the reduced matrix element in every step is polarized with
a polarized leg ?12 or ?. Note that there is a consecutive limit B13 → 0 and B123 → 0 due to
color ordering. The remainder contains only genuine triple-collinear divergences and double-soft
divergences.

Based on our findings, we formulate the rules for the factorization of a collinear limit in polar-
ized matrix elements:

1. Check if a polarized particle is contained in the collinear cluster. If so, the splitting amplitude
is polarized.

2. The polarized reduced matrix element has a particle with clustered momentum ? inserted in
place of the particle initiating the cluster, which is polarized if and only if the splitting was
polarized.

Color-summed (unordered) matrix elements are recovered from the color-ordered matrix el-
ements by summing over the permutation of particles fixed by the color ordering. For unordered
matrix elements, the following nine unordered triple-collinear splitting amplitudes are in place [21],
which can be obtained from the color-ordered ones by

PΔ@ 61 62←@ =
����

2
[
%Δ@ 61 62←@ + %Δ@ 62 61←@ − %Δ@ W1 W2←@

]
+ �2

�%Δ@ W1 W2←@

PΔ6 6 @←@ =
����

2
[
%Δ6 6 @←@ + %6Δ6 @←@ − %ΔW W @←@

]
+ �2

�%ΔW W @←@

PΔ@ @′ @̄′←@ = )'��%Δ@ @′ @̄′←@

PΔ@′ @̄′ @←@ = )'��%Δ@′ @̄′ @←@

PΔ@ @̄ @←@ = ��

(
�� −

��

2

)
%Δ@ @̄ @←@

PΔ@̄ @ @←@ = ��

(
�� −

��

2

)
%Δ@̄ @ @←@

8
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PΔ6 @ @̄←6 =
��)'

2
[
%Δ6 @ @̄←6 + (2↔ 3) − %ΔW @ @̄←6

]
+ ��)'%ΔW @ @̄←6

PΔ@ @̄ W←6 =
��)'

2
[
%Δ@ @̄ 6←6 + (1↔ 2) − %Δ@ @̄ W←6

]
+ ��)'%Δ@ @̄ W←6

PΔ61 62 63←6 =
�2

�

4
[
%Δ61 62 63←6 + (1↔ 3)
+ %Δ61 63 62←6 + (1↔ 2)
+ %62 Δ61 63←6 + (2↔ 3)

]
. (16)

5. Conclusion

We presented the unresolved limits of polarized tree-level matrix elements up to NNLO. We
showed analytically that subtraction is feasible in the Larin scheme for the tree-level real-radiation
contributions to DIS jet observables up to di-jet at NNLO. The full set of unresolved limits up to
NNLO for any polarized matrix element will be presented in a future publication [36].
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