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Deep learning reconstruction of neutrino direction,
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predictions
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With the IceCube-Gen2 observatory under development and RNO-G under construction, the
first detection of ultra-high-energy neutrinos is on the horizon making event reconstruction a
priority. Here, we present a full reconstruction of the neutrino direction, shower energy, and
interaction type (and thereby flavor) from raw antenna signals. We use a deep neural network with
conditional normalizing-flows for the reconstruction. This, for the first time, allows for event-
by-event predictions of the posterior distribution of all reconstructed properties, in particular, the
asymmetric uncertainties of the neutrino direction. The algorithm was applied to an extensive
MC dataset of ’shallow’ and ’deep’ detector components in South Pole ice. We present the
reconstruction performance and compare the two station components. For the first time, we
quantify the effect of birefringence on event reconstruction.
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1. Introduction

During the last decade, there have been tremendous advances in astroparticle physics and high-
energy neutrino detection. The IceCube neutrino observatory at the South Pole has successfully
measured the cosmic neutrino flux [1] and identified several galactic [2] and extra-galactic [3, 4]
sources of neutrinos. However, questions remain about even more energetic neutrinos: What is the
neutrino flux at ultra-high energies, what are the sources of these neutrinos, and can we measure and
reconstruct their properties? One of the most promising approaches to tap into the ultra-high energy
neutrino flux is the in-ice radio technique [5]. Exploiting the Askaryan effect from neutrino-induced
particle showers and the long attenuation length in polar ice sheets it offers a cost-effective way to
instrument enormous volumes of ice. The ARIANNA [6], ARA [7], and ANITA [8] experiments
have gathered a lot of data and insight into how to build such a detector. The RNO-G [9] experiment
currently under construction in Greenland and the proposed order of magnitude larger IceCube
Gen2-Radio [10] experiment planned to be deployed at the South Pole might be the first to detect
an ultra-high energy neutrino.

Measuring an ultra-high energy neutrino is a matter of building a detector with a large enough
effective area. To get the most out of these detectors they should not be designed to be pure counting
experiments of neutrinos but also capable of characterizing event properties precisely. Many physics
applications of ultra-high energy neutrino detectors go beyond measuring the neutrino flux. If the
detectors are built such that they can reconstruct the neutrino’s energy, direction, and flavor, it would
be possible (given enough statistics) to conduct point source searches [11], constrain source models
[12], measure flavor compositions [13], and the ultra-high energy neutrino cross section [14].

Machine learning, and in particular deep learning, has already helped many physics experiments
to get the most out of their measured data, increase the amount of usable data they have available,
and even optimize their detector design [15]. Traditionally deep learning methods have struggled
to not only provide a best-fit-value but also to quantify their uncertainty. New methods such as
conditional normalizing-flows [16, 17] tackle these shortcomings by providing the full posterior
PDF instead of a single best-fit-value. Applying these new methods to in-ice radio detection can
help to get the most science out of the new detectors.

This contribution aims to show what is possible in terms of reconstruction for current and future
in-ice radio neutrino detectors. We show the resolution that can be reached with the current design
of an IceCube Gen2-Radio station [10] and our newly developed reconstruction algorithm. Using
normalizing-flows, we can predict a full posterior distribution of every event for the shower energy
and neutrino direction and classify the interaction type which gives a handle on the neutrino flavor.
An example of all the reconstructed quantities can be seen in figure 1. The developed algorithm
allows us to fully quantify the statistical uncertainty of a given neutrino event. For the first time we
studied the impact of birefringence effects [18] on the reconstruction. We retrained a model for a
’shallow’ station on data that includes birefringence effects, showing that they can be corrected for
in a reconstruction study. This work is a continuation of a previous reconstruction study [19].
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Figure 1: An overview of all properties of the reconstruction for a single event from the test data set. The
top two plots show the results from the neutrino direction reconstruction, with the lower of the two being the
zoomed-in version of the top one. The green/yellow PDF is the output of the normalizing-flows, the black
cross indicates the MC-true direction of the event, and the orange line shows the 68% contour. The lower
left plot shows the results from the shower energy reconstruction. The blue area indicates the PDF predicted
by the normalizing-flow, the black dashed line indicates the MC-true shower energy of the event, and the
orange area shows the 68% region. The lower right plot shows the classification results. The black bars are
the percentages predicted by the network for the two possible event topologies, and the green region indicates
the MC-true event type.
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2. Monte Carlo Data

To be able to reconstruct a measured neutrino event, we currently rely on Monte Carlo data
to train the algorithm, as no neutrino event has been measured with the radio method yet. The
NuRadioMC and NuRadioReco frameworks [20, 21] provide a description of the detection process
and return signal traces as if they were measured by the antennas after a neutrino interaction. They
force a neutrino interaction in the simulated volume, describe the particle shower and the radio
emission from the shower up to the radio propagation through the ice, and the response of the
antennas to the radio signal. For this study, we simulated two detector designs from the planned
IceCube Gen2-Radio detector at the South Pole. The ’shallow’ detector component combines
four surface LPDA antennas with a single v-pol antenna, sitting at −10 m below the surface. The
’deep’ detector component combines twelve v-pol and four h-pol antennas in three boreholes from
−45 m down to −150 m. 2.1 million events were simulated for each detector type over a uniform
shower energy spectrum from 1016 eV up to 1020.2 eV, to avoid bias in the most relevant energy
region (∼1017 eV - 1019 eV). Two event topologies were simulated based on the shower type of
the neutrino-induced interaction. As we consider the signals arriving in a single station, all events
inducing a single hadronic shower look the same to the reconstruction. This includes neutral-current
interactions (NC) of all neutrino flavors as well as charged current interactions of muon-, and tau-
neutrinos because the created muon or tau in a charged current interaction leaves the detection
volume of a single station, thus leaving only a hadronic shower behind. The only different topology
is the electron neutrino charged current interactions (CC), as here an electromagnetic shower
initiated by the electron overlaps with the hadronic shower from the initial neutrino interaction.
’Shallow’ detector components were triggered by requiring a time-coincident high/low threshold
crossing in two out of four LPDAs and ’deep’ detector components were triggered by a phased array
consisting of four v-pol antennas. To have unbiased results, the data set was split into three data sets
(training, validation, and testing). For the results shown in section 4, only the test data set, which
the algorithm had never seen before, was used. In order to test how birefringence influences the
reconstruction all triggered events were re-simulated with ice that includes birefringence effects.

3. Deep Learning Algorithm

For this study, we wanted to design an algorithm that does not have any information about
the event topology (hadronic or hadronic plus electromagnetic) but can give back all relevant
information about the event properties with uncertainties. To do this we made use of ResNet blocks
[22] and conditional normalizing-flows [16, 23]. For the ResNet architecture, we took inspiration
from a Kaggle challenge about detecting gravitational waves [24]. For the normalizing-flows we
used the jammy_flows package [25] which allows us to integrate the mapping procedure into a
PyTorch network.

For each detector component (’shallow’ and ’deep’) we trained a separate network. For the
’shallow’ components, the input data was a [5 x 512] dimensional array (five antennas and 512
time samples at a sampling rate of 2.4 samples per ns) while for the ’deep’ component, the input
data was a [16 x 2046] dimensional array (16 antennas with 2046 samples at a sampling rate of
2.4 samples per ns). Via one-dimensional CNN layers (2 for the ’shallow’ components and 4 for
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the ’deep’ components) the arrays were compressed to an array of the size [# antennas x 256
x 256] where the last dimension contains different representation filters. From here the data was
treated as an image where the colour channels correspond to the number of antennas. We then
used a slightly modified version of the ResNet-34 [22] architecture with 512 output nodes. The
output nodes were then handed to three separate sections for the shower energy, neutrino direction,
and shower type reconstruction. For the shower energy, we used a Gaussianization flow for a
one-dimensional Euclidean property. This flow returns the posterior PDF over the shower energy
where we use sample mean and sample variance to quantify the reconstruction and its uncertainty.
For the neutrino direction, we used a spherical-spline-flow for a two-dimensional property on a
sphere. This flow returns the posterior over the neutrino direction where we use the mean as the
best-fit-value and the area of the 68-percent contour as the uncertainty of the event to quantify
the results. For the shower type, we used a fully connected layer to a single node with a sigmoid
activation function. The percentage that is returned can be interpreted as the probability that the
given event came from a hadronic shower overlapping with an electromagnetic shower, i.e., from
an electron neutrino charged-current interaction.

4. Resolution

To make a statistically significant statement about the resolution we analyzed the PDF sizes
predicted for 100,000 events per station type. Similar to the training data set, the test data set was
distributed uniformly in shower energy. Figure 2 shows the results from the shower energy and
the neutrino direction reconstruction. Plotted is the square root of the median variance from the
predicted distributions against the shower energy for the energy reconstruction and the median size
of the 68% contour for the direction reconstruction. The plots make it possible to directly compare
the resolution of the different event topologies and station layouts. To understand if the predicted
uncertainty contours can be trusted we investigated the coverage of the reconstruction, a measure
of how many of the ’true’ energies/directions lie in the correct uncertainty contour. For the most
part, coverage was within 5% of the expected value. Only some outliers at energies below 1017 eV
had an under coverage down to 20% for the neutrino direction reconstruction.

For the shower energy reconstruction, there is a bias visible for both topologies and station
layouts between 1016 eV and 1017 eV due to which the smaller uncertainties predicted at these
energies cannot be trusted. Except for the low energy bias the resolution drops with shower energy.
The simpler hadronic showers have significantly smaller uncertainties (up to 0.5 eV in log E) than
the more complex showers where an electromagnetic shower overlaps the hadronic shower. The
discrepancy gets larger at higher energies, indicating that the difference comes from pulses affected
by the LPM effect. The uncertainties from the ’deep’ stations are significantly (up to 0.15 eV in
log E) smaller than for ’shallow’ stations. This can be explained as the ’deep’ stations have more
antennas and can thus map a bigger portion of the Cherenkov cone compared to the ’shallow’
stations. As these results quantify the uncertainty on the shower energy, it is important to mention
that for NC events an additional uncertainty of about ∼0.3 eV in log E has to be introduced due to
the inelasticity of the event when trying to calculate the neutrino energy.

For the neutrino direction, again, hadronic showers show smaller contours than the events
with an electromagnetic component. The uncertainties from the ’shallow’ stations are significantly
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Figure 2: Results of the shower energy (left) and neutrino direction (right) reconstruction. Every bin in
the plots covers 0.2 in the logarithm of the shower energy, where every bin contains the same number of
events (∼5000). The diamonds show the results for the ’shallow’ station reconstruction while the crosses
show the results from the ’deep’ stations. The blue markers are for only hadronic shower events while the
red markers are for hadronic and electromagnetic showers. For the shower energy, we plot the median size
of the square root of the variance from the predicted distribution on the y-axis. For the neutrino direction,
we plot the median size of the orange contours from the top plot of figure 1 on the left y-axis and the space
angle difference that corresponds to this size if the contour was Gaussian on the right y-axis.

smaller than for ’deep’ stations. This can be explained as the antennas used in ’deep’ stations are
limited by the diameter of the borehole which limits the ability to measure the horizontal polarization
component of the signal. As the polarization is crucial to reconstructing the neutrino direction, this
limits the angular resolution.

The interaction type classification showed a 73% true positive rate at 10% false positive rate for
correctly identifying electromagnetic shower components for ’deep’ stations and a 1018 eV shower.
For ’shallow’ stations the true positive rate was about 64% at the same false positive rate and shower
energy. We speculate that the cause of the difference is due to the larger number of antennas with
larger spacing. The accuracy of the classification increased significantly with rising shower energy
due to the LPM effect.

The resolution of the energy reconstruction was improved substantially compared to similar
previous analyses [26, 27] without using any quality cuts. The resolution of the direction recon-
struction was reduced by about a factor of 10 for the ’deep’ stations and by about 2 degrees in
space angle difference for the ’shallow’ stations compared to similar previous analyses [27, 28].
The results from the flavor classification were comparable to a previous analysis [13, 29]. We note
that these comparisons are not exact measures due to potential differences in the datasets and event
selection.

4.1 The Impact of Birefringence on the Reconstruction

The ice at the South Pole is known to have birefringent properties [30]. However, the impact
this effect will have on the radio detection of neutrinos is still not fully understood. There are
studies on how birefringence alters a radio pulse [18], and how it would affect the sensitivity of
a radio neutrino detector [31], but so far no study has been done on the impact of birefringence

6



P
o
S
(
A
R
E
N
A
2
0
2
4
)
0
5
3

Deep learning reconstruction of neutrino direction, energy, and flavor Nils Heyer

Figure 3: Results of the shower energy (left) and neutrino direction (right) reconstruction for birefringent
and isotropic data for ’shallow’ stations (similar as figure 2 but with birefringence effects).

on the achieved resolution of a reconstruction. In previous reconstruction studies, the effect was
mentioned as a systematic uncertainty but its effect wasn’t quantified. Here we present the first study
on the impact of birefringence on the reconstruction. For this purpose, we re-simulated all events
from our ’shallow’ dataset with the NuRadioMC implementation of birefringence effects [18] and
repeated the full reconstruction, training a completely new model. Previous studies have shown that
birefringence has two major effects on radio pulses: It changes their polarization due to a mixing
of polarization Eigenstates, and it introduces a time delay between these states. The magnitude of
these effects depends strongly on the azimuth angle by which the pulse propagates through the ice
compared to the glacial ice-flow. The intention behind this study was to show that a deep learning
approach can pick up on this dependence and still manage to perform the reconstruction.

The results of the reconstruction can be seen in figure 3. The direction resolution gets worse
when considering birefringence effects which can be explained by a more complex propagation of
the radio signal where the polarization of the pulse gets altered, making it harder for the model to
reconstruct it. However, the reconstruction is still able to perform on a similar level compared to
the results that did not include the birefringence effects. Interestingly the energy, reconstruction
improves significantly when considering birefringence effects. We interpret this effect as a result of
the introduced time delay between polarization eigenstates. This time delay depends linearly on the
distance to the neutrino interaction vertex. By significantly improving the vertex reconstruction,
also the energy resolution is improved.

5. Conclusion

For this contribution, we created a large Monte Carlo dataset for in-ice radio stations detecting
neutrinos at the South Pole. Using this dataset we trained a neural network to reconstruct the shower
energy, neutrino direction, and shower type of the event. For the shower energy and the neutrino
direction, we predict the full uncertainty PDF for every event. We evaluated the reconstruction
by the size of the predicted uncertainties while checking for sufficient coverage. At 1 EeV ’deep’
stations have an energy resolution of 0.15 in log E and a direction resolution of 70 square degrees
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for a simple hadronic shower. At the same energy with the same shower type, the ’shallow’ stations
have an energy resolution of 0.3 in log E and a direction resolution of 10 square degrees. The
Impact of birefringence was investigated for the first time to see if data including the birefringence
effect could still be reconstructed. This turned out to be the case with the direction reconstruction
suffering slightly while the energy reconstruction improved significantly. We were able to relate the
changes in the resolution due to birefringence to the effects of birefringence on radio pulses. The
work on the reconstruction is still ongoing with more ideas being investigated.
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