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Extensive air showers developing through the atmosphere emit radio signals, which can be mea-
sured by antennas on ground. Multiple antennas measure this radio footprint as voltage signals as
a function of time. Information Field Theory (IFT) is a framework to address field reconstruction
problems with many degrees of freedom, such as imaging, and is based on Bayesian statistics.
With IFT, it is possible to approximate posterior distributions over field configuration spaces and
thereby to effectively invert measurements. An inference process based on IFT is devised to
reconstruct the four-dimensional distribution of currents in the atmosphere. Inside a volume along
to the shower axis, is filled with non-parametric structures describing the mascroscopic currents
that would produce the electric field at the antennas. In this contribution, we demonstrate this
approach on a toy example to investigate technical limitations and challenges.
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1. Introduction

One of the most pressing issues in radio emission from cosmic-ray induced air showers is
the direct reconstruction of the emission evolution. The aim is to reconstruct from measured
antenna signals the temporal evolution of the radio emission and, in particular, the height-dependent
magnitude of the energy flux.

In the already successful reconstructions of particle shower development via fluorescent light
using telescopes, the increase in UV light to a shower maximum and subsequent decent can be
seen. Such a development should also be present for radio signals. Simulations show the increase
to maximum emission and the decrease, which follow the development of particle production in
the shower with a slight delay. An important difference to fluorescent light is that the atmosphere
is transparent for radio waves in the 30-80 MHz range, and therefore an unattenuated radio signal
arrives at the antennas.

So far, for individual measured cosmic-ray events including radio signals, a number of simu-
lations have been carried through. In this simulation dataset, a single simulated shower was then
identified that is as similar as possible to the radio measurements. In this paper we will change the
perspective and present an inference approach that in principle allows a direct reconstruction of the
radio emission evolution in the atmosphere from the ground measurements in antennas.

2. Calculating Radio Emissions of Extensive Air Showers

In this section, we first recall the Liènard-Wiechert potentials and specify them for the situation
of a moving charged particle in an air shower [1]. Then we describe our simplified air shower
model of an ordered multitude of charges, moving at relativistic velocities along a shower axis and
allowing for lateral movements at non-relativistic velocities.

2.1 Liènard-Wiechert Potential

The solution is modeled via the Liènard-Wiechert four-potential 𝐴𝜇 which describes a rela-
tivistically moving point charge 𝑞 along a trajectory. Here, the scalar part of 𝐴𝜇 denotes the charge
𝑞 at position rs that is moving with the normalized velocity 𝜷 = v/𝑐:

𝜑(xobs, 𝑡obs) =
( 𝑞

𝑛eff |xobs − rs | − 𝑛eff (xobs − rs) · 𝜷

)
𝑡ret

(1)

The three-vector potential A is aligned with the velocity 𝜷:

A(xobs, 𝑡obs) =
( 𝑞 𝜷

𝑛eff |xobs − rs | − 𝑛eff (xobs − rs) · 𝜷

)
𝑡ret

(2)

Here 𝑛eff(xobs, x′) describes an effective refractive index between observer and point charge in
space, which is obtained here by an averaging integral along a straight line between charge and
observer. Approximating the trajectory as a straight line works well in air [2]. Both expressions are
to be evaluated at the retarded time 𝑡ret defined as

𝑡ret ≡ 𝑡obs −
𝑛eff(xobs, rs)

𝑐
|xobs − rs | . (3)

This is the electromagnetic foundation of calculating the emissions for air showers.
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2.2 Numerical Calculation

To carry out the numerical computations, spacetime is partitioned into discrete elements: The
air shower is modeled as a collection of point charges. The charges exist inside a co-moving volume
that is moving with normalized velocity 𝜷s along the shower-axis. This volume is partitioned into
a regular lattice of voxels, where each voxel is assigned a unique index 𝛼. The shower time, or
retarded time, is discretized into bins 𝑡ret,𝑘 . A voxel’s location in the shower frame is fixed. For
the observer, the voxels are moving and therefore are dependent on the shower time, denoted as
x𝛼 (𝑡ret,𝑘) ≡ x𝛼,𝑘 .

The time for the observer is discretized into time bins 𝑡obs, 𝑗 , which is used to calculate
the observed signal and in practice will be prescribed by antenna electronics. With function
𝑇obs(x𝛼,𝑘 , xobs) = 𝑡ret + 𝑛eff (xobs,x𝛼 (𝑡ret ) )

𝑐
|xobs − x𝛼 (𝑡ret) | we calculate at what point in time the shower

voxel 𝛼 will influence the observer for a given shower time 𝑡ret,𝑘 .
Given that each volume element contains a moving point-charge, we use the closed Liènard-

Wiechert solutions. The shower-time-dependent charge and drift-velocity inside a given spacetime
voxel (𝛼, 𝑘) are denoted as 𝑞𝛼,𝑘 resp. 𝜷′

𝛼,𝑘
. For each point in shower time, the algorithm may fit a

different current distribution inside the volume.
With this discretized air shower, we calculate the four-potential of its radio emission via:

𝐴𝜇 (𝑡obs, 𝑗 , xobs) =
∑︁
𝛼,𝑘

𝑞𝛼,𝑘

(
1

𝜌𝑘𝜷s + 𝜷′𝛼,𝑘

)
𝛿
(
𝑇obs(x𝛼,𝑘 , xobs) − 𝑡obs, 𝑗

) ��� d𝑇obs (x𝛼 (𝑡ret ) ,xobs )
d𝑡ret

���
𝑡ret,𝑘

𝑛eff (xobs, x𝛼,𝑘)
(
1 − 𝑛eff (xobs, x𝛼,𝑘) (xobs−x𝛼,𝑘 ) ·𝜷s

∥xobs−x𝛼,𝑘 ∥
) xobs − x𝛼,𝑘

 . (4)

We sum over all spatial indices 𝛼 and all temporal indices 𝑘 . Component 𝐴0 consists only
of the charge 𝑞 of the point. 𝐴𝑖 is made up of currents, which are split up into two components.
The longitudinal current depends on the velocity of the shower front, but only the excess charges
radiate, modeled with the density parameter 𝜌. Transverse to the shower axis, the current simply
consists of transverse velocities and the charge.The discrete delta function selects the observer time
bin 𝑡obs, 𝑗 that will be affected by the emission. We weight the contribution of a space-time element
with the Jacobian | d𝑇

d𝑡ret
|. The denominator of the shower contains the Doppler factor, idem as the

Liènard-Wiechert solution.
From this, we can calculate the electric field via numerical derivatives:

𝐸 𝑖 (𝑡obs, 𝑗 , xobs) = −
𝜕

𝜕𝑡
𝐴𝑖 (𝑡obs, 𝑗 , xobs) −

𝜕

𝜕𝑥𝑖
𝐴0(𝑡obs, 𝑗 , xobs) (5)

For computational reasons, the current version of the inference algorithms only considers the
time-derivative contribution to the electric field. This will be amended in future versions.

3. Inference

3.1 Information Field Theory

Information Field Theory (IFT) [5] is the application of information theory to fields. With IFT,
we can summarize the available information on some field-like quantity using Bayesian probabilities.
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Shower Axis

Figure 1: Separating the charge’s movement into a transversal and longitudinal component. The longitudinal
current is scaled by a density parameter, since we are only interested in an overdensity for that component,
indicated in blue.

Specifically, it allows to reason about problems with infinite amounts of degrees of freedom, that
is, continuous, physical fields, and their discretized counterparts. The degrees of freedom are
constrained by probabilistic prior assumptions that contain physical knowledge about the problem.
With these, it is possible to calculate field expectation values.

In Information Field Theory, probability distributions are expressed as information Hamiltoni-
ans, related via the Boltzmann distribution:

P(𝑠 |𝑑) = P(𝑑, 𝑠)P(𝑑) ≡
𝑒−H(𝑑,𝑠)

Z(𝑑) (6)

This reformulation turns probabilities into additive quantities.
To write down a problem in this framework, we need to define the measurement equation:

𝑑 = 𝑅[𝑠] + 𝑛 (7)

where 𝑑 denotes data, 𝑠 the signal of interest, 𝑛 an additive noise term, and 𝑅 some operator, that
maps the signal into data space. This equation is directly linked to the likelihood. Assuming the
noise follows Gaussian statistics with covariance 𝑁 , the likelihood reads

P(𝑑 |𝑠) = G(𝑑 − 𝑅[𝑠], 𝑁) (8)

which leads to the likelihood Hamiltonian

H(𝑑 |𝑠) = − lnG(𝑑 − 𝑅[𝑠], 𝑁) = 1
2
(𝑑 − 𝑅[𝑠])†𝑁−1(𝑑 − 𝑅[𝑠]) + 1

2
ln |2𝜋𝑁 |, (9)

which can be used in the inference process as explained below. Finally, one often used approach
is standardization, that turns hierarchical models into flat models, which decouples input variables
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and decreases computational complexity. This is also known as reparametrization trick [3]. In
these standard coordinates, all parameters follow a priori a standard Gaussian distribution, centered
around zero with unit width: 𝜉 ∼ G(𝜉 |0,1). These are transformed to uniformly distributed
variables 𝑢, which are in turn transformed to the hierachical prior P(𝜃) with

𝜃 = F −1
P(𝜃 ) ◦ F

−1
G( 𝜉 ,1) (𝜉) ≡ 𝑓 (𝜉). (10)

F −1(. . .) denotes the applied transformations. With this, 𝜉 are independent, and the hierarchical
complexity is entirely contained within the transformation functions. The standardized Hamiltonian
reads

H(𝑑, 𝜉) = H(𝑑 | 𝑓 (𝜉)) + 1
2
𝜉†1𝜉, (11)

where terms independent of input parameters are dropped.

3.2 JAX

JAX is an open source machine learning framework [4]. For the user it is very similar to the
widely-used numpy package [6]. Beyond ordinary numpy functionality, it offers three key features
that make it particularly useful for this inference problem:

• Most JAX code can be automatically differentiated, yielding exact derivatives and gradients.
This is referred to as autograd.

• Python code can be just-in-time (JIT) compiled under certain conditions, e.g., no side effects,
that is subroutines must be true functions. Just-in-time compilation can then adaptively
optimize the code and vastly decrease computation times, often over multiple magnitudes.

• JAX is able to use Nvidia’s cuda backend [8], allowing seamless execution on GPUs. This
can decrease computation time further.

Next to autograd and JIT compilation, JAX offers the convenience function vmap, which maps
functions in parallel over arrays. This automatically vectorizes calculations written for individual
elements. The function pmap is similar, but instead of vectorization, it parallelizes execution over
multiple computation cores.

As such, JAX is essential for this inference, by providing both gradients for the optimization
procedure, as well as time-efficient procedures to work with the large arrays describing the shower
geometry.

3.3 Shower Model

During inference, the algorithm will generate possible shower geometries and evolutions,
whose radio emission is simulated and measured as described above. The shower model needs to
be expressed in a way that is accessible to the fitting procedure. This is done as follows:

𝑞𝛼,𝑘 = exp(𝜙𝛼,𝑘); 𝜷′𝛼,𝑘 =
𝜒𝜒𝜒𝛼,𝑘√︁

1 + ∥𝜒𝜒𝜒𝛼,𝑘 ∥2
(12)

describe charges and drift velocities for each spacetime element (𝛼, 𝑘) with some voxel-dependent
values 𝜙𝛼,𝑘 and 𝜒𝜒𝜒𝛼,𝑘 . To produce only positive charges per voxel, we plug the corresponding values
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into an exponential function. This way, a possible degeneracy is broken where current direction
and charge sign cancel each other. The resulting vector describing the drift velocities is forced to
have a magnitude of strictly less than 1, ∥𝜷′∥ < 1. To impose structure on the shower geometry, we
build spatial and temporal correlations into the prior model by generating 𝜙 and 𝜒𝜒𝜒 with Gaussian
processes:

𝜙←↪ G(𝜙,Φ); 𝜒𝜒𝜒←↪ G(𝜒𝜒𝜒, 𝑋) (13)

with Φ and 𝑋 as covariance matrices of the Gaussian processes. Since the correlation structures of
the shower are unknown, these matrices are to be inferred from data. For this, they are assumed to
be diagonal in Fourier space and modeled via power spectra. Thus, we get

𝑞𝛼,𝑘 = exp(𝜙𝛼,𝑘) = exp(𝜙(𝜉𝛼,𝑘 , 𝑃Φ(𝜉Φ))) ≡ 𝑞(𝜉) (14)

where 𝜉 are standard normal distributed variables, consisting of per-pixel per-time values 𝜉𝛼,𝑘

and the spatio-temporal correlation power spectrum 𝑃Φ(𝜉Φ). In particular, the power spectra are
modeled non-parametrically, they are generated by another Gaussian process each. The Gaussian
processes producing the spectra are tuned by a handful of hyperparameters. The entire shower is
then described by a set of random numbers 𝜉 = (𝜉𝛼,𝑘 , 𝜉Φ, 𝜉𝛼′ ,𝑘′ , 𝜉𝑋).

3.4 Approximating Posteriors

The posterior distribution describing the shower shape 𝑠 given observed data 𝐷 can be expressed
using the model parameters 𝜉, which together with the generative functions 𝑞(𝜉) and 𝜷′(𝜉) provide
full reconstruction statistics. This inference uses Metric Gaussian Variational Inference (MGVI) [7],
provided by the nifty package [10]. For computational simplicity, we use MGVI instead of the more
expressive successor geoVI [9] in this demonstration. MGVI allows the inference for problems with
many degrees of freedom, such as this four-dimensional imaging task. The posterior distribution is
approximated by a multivariate Gaussian:

P (𝑠 |𝐷) ≡ P (𝜉 |𝐷) ≈ G
(
𝜉 − 𝜉,Ξ

)
(15)

where the covariance matrixΞ is the Fisher information metric. The posterior is found by minimizing
the Kullback-Leibler divergence 𝐷KL

(
G

(
𝜉 − 𝜉,Ξ

)
∥P (𝜉 |𝐷)

)
. The posterior distribution itself can

be expressed by the likelihood and prior distributions via Bayes’ theorem. Using the Hamiltonian
language of IFT, this leads to the expression

𝐷KL
(
G

(
𝜉 − 𝜉,Ξ

)
∥P (𝜉 |𝐷)

)
= ⟨H (𝜉 |𝐷)⟩G( 𝜉−𝜉 ,Ξ) − ⟨H (𝜉 − 𝜉,Ξ)⟩G( 𝜉−𝜉 ,Ξ)
= ⟨H (𝐷 |𝜉) + H (𝜉)⟩G( 𝜉−𝜉 ,Ξ) − ⟨H (𝜉 − 𝜉,Ξ)⟩G( 𝜉−𝜉 ,Ξ) .

(16)

The evidence P(𝐷) can be ignored in the minimization procedure, since it does not depend on
variational parameters 𝜉 and Ξ describing the approximate posterior distribution.

3.5 Inference of Toy Example

To test the inference procedure, a random shower geometry is generated by the model and
then reconstructed by the algorithm. First we draw model parameters 𝜉test, producing the shower
shape 𝑠test, consisting in turn of 𝑞test and 𝜷′test. The generated shower is put through the forwards
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Figure 2: Electric fields at selected antennas in the example reconstruction.

process and, with added Gaussian noise 𝑛, yields the toy data 𝐷test. Several toy time-traces are
shown in Figure 2. Given this data, the algorithm is used to find valid 𝑞 and 𝜷′ configurations.
Figure 3a shows the drift currents jdrift = 𝑞test𝜷

′
test for one slice of the shower cube at a given time

𝑡ret, Figure 3b shows the drift current posterior samples. The individual samples are plotted on top
of each other to visualize the directional scatter. Overall, the structure is remarkably similar. While
there are small translational differences, the currents follow the same directions.

(a) True drift currents for one horizontal slice of the
shower volume for one point in time.

(b) Posterior samples of drift currents for the same
slice.

Figure 3: Drift currents in the toy inference problem. The color indicates the 𝑧 component of the vectors.

4. Summary

In this paper we have demonstrated a working prototype of an imaging algorithm for extensive
air showers. Using Information Field Theory, we devised a procedure to fit many space-time
elements at the same time, reconstructing macroscopic current distributions in the atmosphere from
measured electric fields. With IFT’s variational inference and the computational framework JAX, it
was possible to test this approach on toy examples. The inference algorithm offers statistical insights
by calculating an approximate posterior. With this, we were able to show that we can calculate the
posterior mean and width of the reconstructed shower shape, completely characterizing a simplified
toy shower.
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Next, we want to expand this method to improve the physical assumptions inside the emission
calculation. After making sure the inference is self-consistent, we plan to apply this to physical
scenarios and explore the imaging capabilities of the presented method. Open questions include
flexibility of the framework, interpretation of statistics, and degeneracy of the solution space.
Eventually, we are planning to image air showers from measured radio signals.
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