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We provide a brief overview of the main results of the interaction picture approach to neutrino
oscillations. In this framework, mixing is treated as an interaction between different neutrino
flavors. The oscillation formula is derived by calculating the survival probability of a specific
flavor neutrino. Notably, this method yields the same modified oscillation formula as the flavor
Fock space approach, exhibiting dependence on both the difference and the sum of neutrino
frequencies.
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1. Neutrino oscillations: a perturbative approach

Our starting point is the effective weak-interaction Lagrangian1 including a neutrino-mixing
term

L = L0 + L𝑚𝑖𝑥 + L𝑤𝑖𝑛𝑡 , (1)

with

L0 =
∑︁

𝜎=𝑒,𝜇

𝜈𝜎
(
𝑖/𝜕 − 𝑚𝜎

)
𝜈𝜎 +

∑︁
𝜎=𝑒,𝜇

𝑙𝜎
(
𝑖/𝜕 − 𝑚̃𝜎

)
𝑙𝜎 , (2)

L𝑚𝑖𝑥 = −𝑚𝑒𝜇

(
𝜈𝑒𝜈𝜇 + 𝜈𝜇𝜈𝑒

)
, (3)

L𝑤𝑖𝑛𝑡 = − 𝑔

2
√

2

∑︁
𝜎=𝑒,𝜇

[
𝑊+

𝜇 𝜈𝜎 𝛾𝜇 (1 − 𝛾5) 𝑙𝜎 + ℎ.𝑐.
]

(4)

Here we limit to the case of two-flavors.
The neutrino kinetic termL0+L𝑚𝑖𝑥 can be diagonalized by means of the mixing transformation

[1, 2] (
𝜈𝑒 (𝑥)
𝜈𝜇 (𝑥)

)
=

(
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

) (
𝜈1(𝑥)
𝜈2(𝑥)

)
, (5)

with tan 2𝜃 = 2𝑚𝑒𝜇/(𝑚𝜇 − 𝑚𝑒). This transformation connects the flavor/gauge basis to the
mass/energy basis, where the weak interaction described by L𝑤𝑖𝑛𝑡 is non-diagonal. In such a
case the effect of mixing is entirely included in the weak-interaction vertex. However, it is crucial
to establish a proper definition of flavor states [3–7], as neutrinos are produced with a definite flavor
by (charged current) weak interactions.

Here, following Ref. [8], we proceed in a different way, working in the flavor basis. We split
the Lagrangian as

L = L0 + L𝑖𝑛𝑡 , (6)

with L𝑖𝑛𝑡 = L𝑚𝑖𝑥 + L𝑤𝑖𝑛𝑡 . In other words, we now consider the mixing as an interaction among
different flavored neutrinos and not as the off-diagonal part of the mass matrix. In this way we can
apply the usual techniques of the perturbation theory to deal with interacting field theories. From
now on we will work at the zeroth-order in 𝑔, i.e. we only consider L𝑖𝑛𝑡 = L𝑚𝑖𝑥 .

Using the standard Dyson expansions of the time evolution operator up to the second order in
𝑚𝑒𝜇, one has

𝑈 (𝑡𝑖 , 𝑡 𝑓 ) = 1I − 𝑖 𝑚𝑒𝜇

∫ 𝑡 𝑓

𝑡𝑖

d4𝑥 : 𝜈𝑒 (𝑥)𝜈𝜇 (𝑥) + 𝜈𝜇 (𝑥)𝜈𝑒 (𝑥) : (7)

−
𝑚2

𝑒𝜇

2

∫ 𝑡 𝑓

𝑡𝑖

d4𝑥1d4𝑥2 T
[ (

: 𝜈𝑒 (𝑥1)𝜈𝜇 (𝑥1) + 𝜈𝜇 (𝑥1)𝜈𝑒 (𝑥1) :
) (

: 𝜈𝑒 (𝑥2)𝜈𝜇 (𝑥2) + 𝜈𝜇 (𝑥2)𝜈𝑒 (𝑥2) :
) ]

+ . . .

1Here we do not consider the neutral-current interactions because they do not play an active role in neutrino oscillations.
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The second order piece can be further expanded using Wick’s theorem:

𝑈 (2) (𝑡𝑖 , 𝑡 𝑓 ) = −
𝑚2

𝑒𝜇

2

∫ 𝑡 𝑓

𝑡𝑖

d4𝑥1

∫ 𝑡 𝑓

𝑡𝑖

d4𝑥2

[
: 𝜈𝑒 (𝑥1)𝜈𝜇 (𝑥1)𝜈𝑒 (𝑥2)𝜈𝜇 (𝑥2) :

+ : 𝜈𝑒 (𝑥1)𝜈𝜇 (𝑥1)𝜈𝜇 (𝑥2)𝜈𝑒 (𝑥2) : + : 𝜈𝜇 (𝑥1)𝜈𝑒 (𝑥1)𝜈𝑒 (𝑥2)𝜈𝜇 (𝑥2) : + : 𝜈𝜇 (𝑥1)𝜈𝑒 (𝑥1)𝜈𝜇 (𝑥2)𝜈𝑒 (𝑥2) :

+ 2 𝑖
(
𝑆𝑒𝛼𝛽 (𝑥2 − 𝑥1) : 𝜈𝛽𝜇 (𝑥2)𝜈𝛼𝜇 (𝑥1) : +𝑆𝜇

𝛼𝛽
(𝑥2 − 𝑥1) : 𝜈𝛽𝑒 (𝑥2)𝜈𝛼𝑒 (𝑥1) :

) ]
, (8)

where 𝑆𝜎
𝛼𝛽

(𝑥) is the Dirac propagator for the 𝜎-flavor neutrino.
In the interaction picture, 𝜈𝜎 (𝜎 = 𝑒, 𝜇) can be expanded as free fields, whose evolution is

governed by L0:

𝜈𝜎 (𝑥) =
1
√
𝑉

∑︁
k,𝑟

[
𝑢𝑟k,𝜎 (𝑡) 𝛼

𝑟
k,𝜎 + 𝑣𝑟−k,𝜎 (𝑡) 𝛽

𝑟†
−k,𝜎

]
𝑒𝑖k·x , (9)

with 𝑢𝑟k,𝜎 (𝑡) = 𝑒−𝑖𝜔k,𝜎 𝑡 𝑢𝑟k,𝜎 , 𝑣𝑟k,𝜎 (𝑡) = 𝑒𝑖𝜔k,𝜎 𝑡 𝑣𝑟k,𝜎 , 𝜔k,𝜎 =
√︁
|k|2 + 𝑚2

𝜎 . Annihilation
operators satisfy

𝛼𝑟
k,𝜎 |0⟩ = 0 = 𝛽𝑟k,𝜎 |0⟩ . (10)

Our aim is to compute the the survival probability for a flavor neutrino (say 𝜎 = 𝑒), i.e. the
probability of the process |𝜈𝑟p,𝑒⟩ → |𝜈𝑟p,𝑒⟩ . The amplitude can be written as

A𝑒→𝑒 (p; 𝑡𝑖 , 𝑡 𝑓 ) = 1 + A (2)
𝑒→𝑒 (p; 𝑡𝑖 , 𝑡 𝑓 ) , (11)

where A (2)
𝑒→𝑒 (p; 𝑡𝑖 , 𝑡 𝑓 ) is the second-order piece, which is proportional to 𝑚2

𝑒𝜇. Taking the square,
we disregard the pieces proportional to 𝑚4

𝑒𝜇. Therefore, we get

P𝑒→𝑒 (p;Δ𝑡) = 1 + 2ℜ𝑒

(
A (2)

𝑒→𝑒 (p; 𝑡𝑖 , 𝑡 𝑓 )
)
. (12)

Explicitly one finds [8]

P𝑒→𝑒 (p;Δ𝑡) = 1 − 4𝑚2
𝑒𝜇

[
𝑊2

p(
𝜔p,𝑒 − 𝜔p,𝜇

)2 sin2
( (
𝜔p,𝜇 − 𝜔p,𝑒

)
Δ𝑡

2

)
+

𝑌2
p(

𝜔p,𝑒 + 𝜔p,𝜇
)2 sin2

( (
𝜔p,𝜇 + 𝜔p,𝑒

)
Δ𝑡

2

)]
. (13)

where we introduced the coefficients

𝑊p = 𝑢𝑠p,𝜇𝑢
𝑠
p,𝑒 , 𝑌2

p =
∑︁

s

(
𝑌 𝑟𝑠

p

)∗
𝑌 𝑟𝑠

p , 𝑌 𝑠𝑠′
p = 𝑢𝑠p,𝜇𝑣

𝑠′
−p,𝑒 . (14)

If we now define

𝑈p = 𝑊p
𝑚𝜇 − 𝑚𝑒

𝜔p,𝑒 − 𝜔p,𝜇
=

√︄ (
𝜔p,𝑒 + 𝑚𝑒

) (
𝜔p,𝜇 + 𝑚𝜇

)
4𝜔p,𝑒𝜔p,𝜇

(
1 + |p|2(

𝜔p,𝑒 + 𝑚𝑒

) (
𝜔p,𝜇 + 𝑚𝜇

) ) ,(15)

𝑉p = 𝑌p
𝑚𝜇 − 𝑚𝑒

𝜔p,𝑒 + 𝜔p,𝜇
=

√︄ (
𝜔p,𝑒 + 𝑚𝑒

) (
𝜔p,𝜇 + 𝑚𝜇

)
4𝜔p,𝑒𝜔p,𝜇

(
|p|

𝜔p,𝑒 + 𝑚𝑒

− |p|
𝜔p,𝜇 + 𝑚𝜇

)
, (16)

3
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we can write the survival probability (13) as

P𝑒→𝑒 (p;Δ𝑡) = 1 − sin2 2𝜃
[
𝑈2

p sin2
( (
𝜔p,𝜇 − 𝜔p,𝑒

)
Δ𝑡

2

)
+𝑉2

p sin2
( (
𝜔p,𝜇 + 𝜔p,𝑒

)
Δ𝑡

2

)]
. (17)

where we used that 𝑚𝑒𝜇/(𝑚𝜇 −𝑚𝑒) = tan 2𝜃/2 ≈ 𝜃 ≈ sin 𝜃. In the approximation we adopted, this
expression non-trivially coincides with the oscillation probability originally derived in Ref. [9] (see
also the review [10]). With respect to the usual Pontecorvo formula [1, 2, 11], which only depends
on the difference of neutrino energies2 the above expression also contains a term describing fast
oscillations, depending on 𝜔𝑒 +𝜔𝜇. Moreover, Eq.(17) contains the two Bogoliubov coefficients𝑈p
and 𝑉p so that 𝑈2

p +𝑉2
p = 1. From the expressions (15),(16) one can see that 𝑈p → 1 while 𝑉p → 0

in the relativistic limit 𝑚𝜎/|p| → 0, thus recovering the standard formula.
It is important to highlight the central role of finite time in the present approach. Specifically,

the primary focus of the analysis is the time evolution operator (8), rather than the 𝑆-matrix.
This distinction is closely tied to the time-energy uncertainty relation [12, 13], which can also be
interpreted as a flavor-energy uncertainty relation in the present case [14] (see also the recent review
[15]). In the limit 𝑡𝑖 → −∞ and 𝑡 𝑓 , energy would be strictly conserved, leading to the suppression
of flavor oscillations [16]. This scenario is analogous to the case of unstable particles [17–19],
where computations at finite times are standard.
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