

# Probing lepton-flavor-violating processes in $e^+e^-$ colliders

# Lam Thi To Uyen\* and Guey-Lin Lin

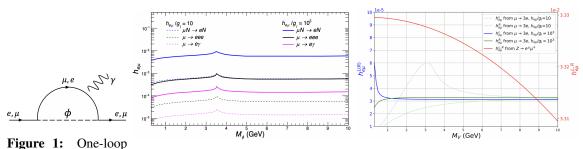
Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

E-mail: touyen.sc09@nycu.edu.tw, glin@nycu.edu.tw

A scenario involving lepton-flavor-violating (LFV) interactions, either due to a LFV coupling of a scalar or a vector boson, is an intriguing beyond standard model (BSM) phenomenon. This LFV coupling in the presence of muons leads to a rich phenomenology including an extra contribution to muon anomalous magnetic moment. With the low-energy effective coupling  $\mathcal{L}_{\phi e \mu} = h_{e\mu} \phi \bar{e} (1 + \gamma^5) \mu + \text{h.c.}$ , which turns electron into muon or vice versa through a scalar  $\phi$ , we first derive the  $(h_{e\mu}, M_{\phi})$  parameter space that can account for experimental measurements of muon anomalous magnetic moment. We propose to probe such a parameter space or that with an even smaller  $h_{e\mu}$  by searching for background-free processes of same-sign, same-flavor final-state lepton pairs  $e^+e^- \to e^\pm \mu^\mp \phi \to e^\pm e^\pm \mu^\mp \mu^\mp$  at Belle II experiment. Assuming such final states are detected by Belle II, we further propose an effective method to discriminate between scalar and vector boson-mediated LFV interactions based on significant differences in their event kinematic distributions.

42nd International Conference on High Energy Physics (ICHEP2024) 18-24 July 2024 Prague, Czech Republic

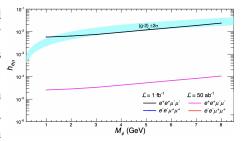
\*Speaker


#### The lepton-flavor-violating scalar mediator

Various BSM theories involve LFV processes where charged leptons change flavor. LFV searches directly address new physics (NP) in flavor and generations, in which muon-related LFV processes offer potential solutions to the long-standing  $g_{\mu} - 2$  discrepancy. A model of a real scalar mediator  $\phi$  interacting with a pair of oppositely-charged, different-flavored  $e^{\pm}\mu^{\mp}$  is described as [1]

$$\mathcal{L}_{\phi e \mu} = \sum_{\ell = e, \mu, \tau} g_{\ell} \phi \bar{\ell} (1 + \gamma^{5}) \ell + h_{e \mu} \phi \bar{e} (1 + \gamma^{5}) \mu + h_{e \mu}^{*} \phi \bar{\mu} (1 - \gamma^{5}) e$$
 (1)

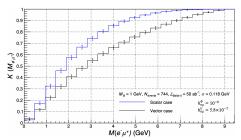
where  $g_{\ell}$  and  $h_{e\mu}$  are lepton-flavor-conserving and LFV couplings, respectively. We assume vanishing flavor-diagonal terms, i.e., the Lagrangian contains only LFV  $e\mu$  terms. Using Feynman rules from eq. (1), processes  $e^+e^- \to e^\pm \mu^\mp \phi$  depend only on  $|h_{e\mu}|^2$  and allow for probing positive real LFV couplings. The one-loop contribution to the muon anomalous magnetic moment shown in figure 1 is evaluated as [2]  $\Delta a_{\mu} = (2x_a^2 \log (x_a/(x_a-1)) - 1 - 2x_a)h_{e\mu}^2/(8\pi^2)$  with  $x_a = m_{\phi}^2/m_{\mu}^2$ .


# Probing the LFV model at Belle II experiment



contribution to  $a_{\mu}$  me- Figure 2: Constraints on LFV couplings mediated by (a) scalar and (b) vector portal diated by scalar  $\phi$ . scenarios.

Experimental constraints on a flavor-violating boson model depend on the relative strengths of  $g_{\ell}$  and  $h_{e\mu}$  couplings of bosons to leptons. These constraints arise by the effect of the Z-Z'mixing with Z' boson arising from an extra U(1)' symmetry. Existing constraints on LFV vector coupling can be derived after diagonalizing interactions of  $\hat{Z}$  and  $\hat{Z}'$  with charged leptons,  $\mathcal{L}_{int}$  =  $-\bar{\ell}_{i}\gamma^{\lambda}\left(\beta_{\ell_{i}\ell_{j}}^{L}P_{L}+\beta_{\ell_{i}\ell_{j}}^{R}P_{R}\right)\ell_{j}Z_{\lambda}-\bar{\ell}_{i}\gamma^{\lambda}\left(h_{\ell_{i}\ell_{j}}^{L}P_{L}+h_{\ell_{i}\ell_{j}}^{R}P_{R}\right)\ell_{j}Z_{\lambda}'\text{ where }\beta\left(h\right)_{\ell_{i}\ell_{j}}^{(L,R)}\text{ are left- (right-heat)}$ handed) Z and Z' couplings, respectively. Figure 2 shows exclusion regions in scalar  $\phi$  [3] and vector V [4] boson masses and LFV couplings for cases with ratios of  $h_{e\mu}$  to  $g_{\ell}$  being 10 and 10<sup>3</sup>.


The sensitivity to  $e\mu$  flavor-violating interactions is studied at Belle II, which is an energy asymmetric detector of 7 GeV  $e^-$  and 4 GeV  $e^+$ . Final-state same-sign lepton pairs in processes  $e^+e^- \rightarrow e^\mp \mu^\pm \phi \rightarrow e^\mp \mu^\pm \mu^\pm e^\mp$ , where  $\phi \rightarrow$  $e^{\pm}\mu^{\pm}$ , are essentially BG free. Applying BG free with 95% CL and kinematical cuts [5] for final-state leptons, the upper bound on  $h_{e\mu}$  for  $e^+e^- \rightarrow e^{\mp}\mu^{\pm}\mu^{\pm}e^{\mp}$  is shown in figure 3. At  $\mathcal{L}=1$  fb<sup>-1</sup>, the Belle II limit on  $h_{e\mu}$  for Figure 3: Constraints on  $h_{e\mu}$  of LFV  $1 \le M_{\phi}/\text{GeV} \le 8$  already touches the  $2\sigma$  parameter region searches at Belle II experiment.



favored by the  $g_{\mu}-2$  anomaly. The sensitivity is inversely proportional to the square root of the luminosity. With a higher luminosity, one can probe the LFV model significantly below the favored parameter region for muon anomalous magnetic moment. In the case of observing the same-sign lepton pairs, it is possible to distinguish between scalar and vector LFV scenarios.

### 3. Discriminating scalar from vector boson portals in LFV processes.

The cumulative mass distribution as a function of the non-resonant  $e\mu$  invariant mass,  $K^i(M_{e^{\mp}\mu^{\pm}}) = \sum_i N_{e^{\mp}\mu^{\pm}B}^i/N_{e^{\mp}\mu^{\pm}B}^{total}$  [6] (with  $B = \phi, V$ ) is exploited to distinguish LFV scalar  $\phi$  from vector V models. Here,  $N_{e^{\mp}\mu^{\pm}B}^{i(total)}$  represent the number of events in a certain i and the total mass range, respectively.  $K^i(M_{e^{\mp}\mu^{\pm}})$  is useful due to significant differences between peak event rates in different scenarios. Figure 4 shows the case of  $K(M_{e^{-}\mu^{+}})$  with statistical errors in binned histograms, each with a bin width of  $2\sigma$ , with  $\sigma$  the recoil mass resolution.



**Figure 4:** Cumulative mass distribution of  $e^+e^- \rightarrow e^-\mu^+ B$  at  $M_B = 1$  GeV,  $\mathcal{L} = 50$  ab<sup>-1</sup>.

Quantitatively, the ordering  $K^{\phi}(M_{e^{\mp}\mu^{\pm}}) > K^{V}(M_{e^{\mp}\mu^{\pm}})$  is observed in this simulation. The function  $K^{\phi}(M_{e^{\mp}\mu^{\pm}})$  increases more rapidly in the middle range of  $M_{e^{\mp}\mu^{\pm}}$  due to the larger event rates of scalar LFV scenario in this mass range. Consequently, LFV scalar and vector boson scenarios can be distinguished at the Belle II detector.

## 4. Summary and conclusions

We study the Belle II sensitivity to the  $e\mu$  flavor-violating scalar boson model. The sensitivity to the LFV Yukawa coupling  $h_{e\mu}$  of processes  $e^+e^- \to e^\pm \mu^\mp \phi \to e^\pm e^\pm \mu^\mp \mu^\mp$  for  $\mathcal{L}=1$  fb<sup>-1</sup> at Belle II can already approach the favorable parameter range accounting for the measured  $g_\mu - 2$  anomaly in the mass range of  $1 \le M_\phi/\text{GeV} \le 8$ . At high luminosity, we could potentially search for the NP. Particularly, the sensitivity for full Belle II luminosity of 50 ab<sup>-1</sup> to  $h_{e\mu}$  is still below the current LFV constraints. The cumulative mass distribution is proposed to distinguish between LFV scenarios involving scalar and vector bosons with statistical uncertainties taken into account.

#### References

- [1] E. Arganda, A. M. Curiel, M. J. Herrero, and D. Temes, *Lepton flavor violating Higgs boson decays from massive seesaw neutrinos*, *Phys.Rev.D* **71** (2005) 035011.
- [2] Motoi Endo et al., Probing e \mu flavor-violating ALP at Belle II, JHEP **06** (2020) 040.
- [3] M. Bauer et al., Flavor probes of axion-like particles, JHEP 09 (2022) 056.
- [4] Cheng-Wei Chiang, Yi-Fan Lin, Jusak Tandean, *Probing leptonic interactions of a family-nonuniversal Z' boson*, *JHEP* 11 (2011) 083.
- [5] E. Kou et al. (Belle-II Collaboration), The Belle II Physics Book, PTEP 12 (2019) 123C01.
- [6] Kwang-Chang Lai, C. S. Jason Leung, and Guey-Lin Lin, *Testing MSW effect in supernova explosion with neutrino event rates*, *Phys. Rev.D* **107** (2023) 043017.