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1. Introduction

The research to explore internal structure of hadrons is entering a tomographic era owing to
high-energy and high-luminosity accelerators together with theoretical and experimental advances
to study physical observables that have two distinct scales of momentum transfer in high energy
collisions. With one hard scale 𝑄 to localize the interaction with quarks and gluons (collectively
referred to as partons) inside a hadron, a controllable soft scale𝑄𝑠 ≪ 𝑄 allows to probe the motion
and/or spatial distributions of quarks/gluons inside the hadrons. Depending on if the probed hadron
is broken or not during the hard collisions, there are two distinct classes of two-scale observables:
inclusive with the probed hadron broken and exclusive with the hadron kept intact. The two-
scale inclusive observables provide opportunities to probe transverse-momentum-dependent parton
distributions (TMDs), 𝑓 (𝑥, 𝑘𝑇 ), with the active parton’s longitudinal momentum fraction 𝑥 and
transverse momentum 𝑘𝑇 ∼ O(𝑄𝑠) [1]. However, breaking the probed hadron necessarily triggers
gluon radiation to introduce a challenge to match the active parton’s 𝑘𝑇 detected in the collision to
the confined motion of the same parton in the probed hadron before it was broken.

On the other hand, the probed hadron of an exclusive process stays intact and is only diffracted
from its momentum 𝑝 to 𝑝′ with the momentum transfer square 𝑡 = (𝑝 − 𝑝′)2 that defines the soft
scale 𝑄𝑠 ≡

√
−𝑡 ≪ 𝑄. The exclusive processes allow to extract the hadron’s generalized parton

distributions (GPDs) [2–6], 𝐹 (𝑥, 𝜉, 𝑡), which depend on the 𝑡 and hadron momentum skewness
𝜉 = [(𝑝 − 𝑝′) · 𝑛]/[(𝑝 + 𝑝′) · 𝑛] along a chosen light-cone direction 𝑛 in addition to longitudinal
momentum fraction 𝑥 of the active parton [7]. Unlike the TMDs, no perturbative showering dilutes
the hadron structure information encoded in GPDs. The Fourier transform of the GPDs’ dependence
on the soft scale 𝑡 at 𝜉 → 0 limit reveals the images of partons inside a confined hadron 𝑓 (𝑥, 𝒃𝑇 )
at transverse spatial positions 𝑏𝑇 in slices of different 𝑥 [8, 9]. Also, the 𝑥-moments of GPDs
𝐹𝑛 (𝜉, 𝑡) =

∫ 1
−1 𝑑𝑥𝑥

𝑛−1𝐹 (𝑥, 𝜉, 𝑡) connect to various emergent properties of hadrons, including their
mass [10–13] and spin [3] composition, internal pressure, and shear force [14–16].

Owing to the QCD color confinement, no quarks and gluons can be detected in isolation. It
is the QCD factorization that matches the probed hadron to its internal partonic structure, making
it possible to extract the partonic information from experimental measurements with controllable
approximations. Since multiple subprocesses with different TMDs or GPDs, distinguished by
their spin and parity properties, can contribute to the same two-scale cross section, extracting the
internal partonic structure information from experimental data is a challenging inverse problem. For
two-scale exclusive observables, cross sections could also receive contributions from subprocesses
independent of GPDs, making the extraction of GPDs even more difficult than TMDs [4, 17–38].
The fact that QCD factorization of GPDs is carried out at the amplitude level makes the partonic
momentum fraction 𝑥 a variable of virtual loop momentum, always integrated from −1 to 1, while
the 𝜉 and 𝑡 are directly observed hadronic variables. This makes the extraction of 𝑥-dependence of
GPDs a very difficult inversion problem [39].

In the following, we will briefly review the recently developed framework for extracting GPDs
from both existing and new two-scale exclusive processes in a uniform and coherent way, providing
some ideas and opportunities to overcome the challenges of separating different GPDs and extracting
their 𝑥-dependence.
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2. Single-diffractive hard exclusive processes for studying GPDs

Because all physical processes that can be used to extract GPDs have a common feature of
involving a diffraction of the colliding hadron ℎ to the observed hadron ℎ′ and a hard interaction as
a short-distance probe, the minimal kinematic configuration requires a 2 → 3 exclusive process,

ℎ(𝑝) + 𝐵(𝑝2) → ℎ′(𝑝′) + 𝐶 (𝑞1) + 𝐷 (𝑞2), (1)

with another colliding particle 𝐵 and produced particles 𝐶 and 𝐷, whose large balancing transverse
momenta (with respect to the ℎ-𝐵 collision axis) defines the hard scale𝑄 ≡ 𝑞𝑇 ∼ 𝑞1𝑇 ∼ 𝑞2𝑇 ≫

√
−𝑡.

We refer to such a 2 → 3 process as a single-diffractive hard exclusive process (SDHEP) [7], which
has a genetic two-stage feature,

ℎ(𝑝) → 𝐴∗(Δ = 𝑝 − 𝑝′) + ℎ′(𝑝′), (2a)

𝐴∗(Δ) + 𝐵(𝑝2) → 𝐶 (𝑞1) + 𝐷 (𝑞2), (2b)

where the diffraction in (2a) and the exclusive 2 → 2 hard collision in (2b) are connected by a
virtual state 𝐴∗ of momentum Δ = 𝑝 − 𝑝′, as shown in Fig. 1(a), whose invariant mass

√
−𝑡 is much

smaller than its energy ∼ O(𝑞𝑇 ). That is, the virtual state 𝐴∗ is much more long-lived than the
time scale of the hard collision (∼ 1/𝑞𝑇 ), which is necessary for the factorization of soft dynamics
taking place at the scale

√
−𝑡 from that of the hard collision that serves as a short-distance probe.

As shown in Fig. 1(b), we describe the diffraction subprocess (2a) using (𝑡, 𝜉, 𝜙𝑆) in the
diffractive frame, where ℎ and 𝐵 collide along a collinear 𝑧𝐷 axis. The 𝑥𝐷 axis is chosen in the
diffractive plane along the transverse momentum 𝚫𝑇 of the 𝐴∗. It varies from event to event, and is
compensated by the varying azimuthal angle 𝜙𝑆 of the hadron transverse spin 𝑺𝑇 , which is fixed in
the lab frame. In this diffractive frame, the large components of the hadron momenta are selected
by the lightlike vector 𝑛 = (1, 0, 0,−1)/

√
2 along −𝑧𝐷 , which is needed to define the skewness 𝜉

independent of the details of the hard collision.
The 𝜉 and 𝑡 determine the c.m. energy squared, 𝑠 = (Δ + 𝑝2)2, of the 2 → 2 hard scattering

in Eq. (2b). We refer to the c.m. frame of the hard collision as the SDHEP frame, where the
𝑧𝑆 axis is along the direction of 𝐴∗ and the �̂�𝑆 ∝ 𝒑′ × 𝒑 perpendicular to the diffraction plane.
This transformation from the diffractive frame to the SDHEP frame is characterized by a power
suppressed transverse boost [6] which leaves 𝑛 and thus the definition of 𝜉 invariant. In this way, 𝜉
is both a variable of GPDs and a kinematic observable for SDHEPs. Each event is then described
by the five kinematic variables (𝑡, 𝜉, 𝜙𝑆 , 𝜃, 𝜙), where 𝜃 and 𝜙 are the polar and azimuthal angles of
the observed particle 𝐶 in the SDHEP frame.

Notably, the SDHEP in Eq. (1) covers all the known processes for extracting GPDs. For an
electron beam, 𝐵 = 𝑒, we have the electroproduction of a real photon [with (𝐶𝐷) = (𝑒𝛾)] and a light
meson [with (𝐶𝐷) = (𝑒𝑀)]. For a photon beam, 𝐵 = 𝛾, we have the photoproduction of dilepton
[with (𝐶𝐷) = (ℓ−ℓ+)], diphoton [with (𝐶𝐷) = (𝛾𝛾)], photon-meson pair [with (𝐶𝐷) = (𝑀𝛾)],
and meson-meson pair [with (𝐶𝐷) = (𝑀1𝑀2)]. For a meson beam, 𝐵 = 𝜋 or 𝐾 , we have the
mesoproduction of dilepton [with (𝐶𝐷) = (ℓ−ℓ+)] and diphoton [with (𝐶𝐷) = (𝛾𝛾)]. Besides
these, one may easily conjecture new processes, such as the mesoproduction of photon-meson pair
[with (𝐶𝐷) = (𝑀𝛾)], and meson-meson pair [with (𝐶𝐷) = (𝑀1𝑀2)], etc.
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Figure 1: (a) Dynamic separation of the SDHEP amplitude into two stages. (b) The frame for analyzing
SDHEPs in Eq. (1), where the linear polarization 𝜁𝛾 along 𝜙𝛾 applies only to photoproduction processes.

Dynamically, the scattering amplitude M can be formally written as a product or convolution
of the amplitudes of the two subprocesses, summing over all possible 𝐴∗ states,

Mℎ𝐵→ℎ′𝐶𝐷
𝜆ℎ𝜆𝐵

=
∑︁
𝐴∗
𝐹ℎ→ℎ′𝐴∗
𝜆ℎ

(𝑡, 𝜉, 𝜙𝑆) ⊗ 𝐻𝐴∗𝐵→𝐶𝐷
𝜆𝐴𝜆𝐵

(𝑠, 𝜃, 𝜙), (3)

where the sum is over different numbers, 𝑚, and flavor contents of the exchanged particles in 𝐴∗,
𝐹ℎ→ℎ′𝐴∗
𝜆ℎ

describes the diffraction with 𝜆ℎ being the helicity of ℎ in the diffractive frame, and
𝐻𝐴∗𝐵→𝐶𝐷

𝜆𝐴𝜆𝐵
stands for the hard 2 → 2 scattering amplitude with 𝜆𝐴 and 𝜆𝐵 the helicities of 𝐴∗ and 𝐵

in the SDHEP frame, respectively. This two-stage description separates the physics taking place at
different scales

√
−𝑡 and 𝑞𝑇 , with the size of contribution from𝑚-th channel scaled as (

√
−𝑡/𝑞𝑇 )𝑚−1

relative to the channel at 𝑚 = 1. For the leading channel, 𝑚 = 1, 𝐴∗ can only be a virtual photon 𝛾∗,
which probes the electromagnetic form factors (𝐹1 and 𝐹2) of ℎ. For the subleading channel with
𝑚 = 2, we have two-parton states, 𝐴∗ = [𝑞𝑞] or [𝑔𝑔], that form a loop to connect the diffraction
and hard scattering subdiagrams in Fig. 1.

At the leading power of
√
−𝑡/𝑞𝑇 , the major contribution at 𝑚 = 2 comes from the loop

momentum integration when the two active partons propagate almost collinearly. This picture is
similar to the exclusive large-angle 2 → 2 scattering of hadrons [40, 41], where the various soft
gluon exchanges are canceled because each collinear pair of partons are so close to each other to
behave effectively like a color-singlet state when approaching to the hard collision. Generalizing to
the single diffractive processes studied here, one can similarly show that any soft gluons connected
to 𝐵, 𝐶, and/or 𝐷 are cancelled to the leading power of

√
−𝑡/𝑞𝑇 [7]. Although the diffractive

kinematics contains the DGLAP region that partially pinches the soft gluon momentum in the
Glauber region, such cancellation decouples the soft gluons from other collinear sectors, resulting
in the factorization of GPDs from the 2 → 2 hard subdiagram,

M [𝑛=2]
ℎ𝐵→ℎ′𝐶𝐷

=
∑︁
𝑖

∫ 1

−1
𝑑𝑥 𝐹𝑖

ℎℎ′ (𝑥, 𝜉, 𝑡; 𝜙𝑆)𝐺𝑖𝐵→𝐶𝐷 (𝑥, 𝜉; 𝑠, 𝜃, 𝜙) + O
(√

−𝑡/𝑞𝑇
)
, (4)

where the
∑

𝑖 runs over both parton flavors and GPD types. The contributions from 𝑚 ≥ 3 channels
are further suppressed by powers of

√
−𝑡/𝑞𝑇 .
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Similarly to the factorization of exclusive large-angle 2 → 2 scattering in Refs. [40, 41], the
GPD factorization of SDHEPs generally assumes the suppression of the endpoint region where one
of the active partons from the meson(s) in {𝐵,𝐶, 𝐷} becomes soft and that the 2 → 2 subprocess in
Eq. (2b) is dominated by one single hard scattering. Independently of these assumptions, though, it
is easy to see that double-diffractive hard exclusive processes are not factorizable due to the pinch
of soft gluons in the Glauber region when the partons of both diffracted hadrons are in the DGLAP
region. That is, the generalization of SDHEPs to 2 → 4 processes and beyond needs to stay in the
single diffractive mode while the hard 2 → 2 subprocess in Eq. (2b) can be modified to 2 → 3, etc.

3. Azimuthal modulations and separation of different GPDs

As discussed above, the leading channel with 𝐴∗ = 𝛾∗ at 𝑚 = 1, generally referred to as Bethe-
Heitler (BH) subprocess, has no sensitivity to GPDs. Their contribution needs to be separated from
that of GPDs at the cross section level, which is not trivial since both contributions interfere at the
amplitude level. Conventionally, the BH subprocess has been treated individually as a “background”
of the GPD-sensitive subprocess. The analyzing frame is designed for the latter and differs from
process to process. As a result, the choice of the light-cone vector 𝑛 to define the 𝜉 and thereby
the definition of GPDs differ from process to process. In addition, the BH subprocess complicates
the azimuthal modulations needed to separate contributions from different GPDs. While the frame
choice does not alter the underlying dynamics, it does affect the distribution of the observed
variables. Since the BH and GPD subprocesses as well as different GPDs contribute to the same
cross section, it is important to choose a frame in which the azimuthal distribution directly reflects
the quantum numbers of the exchanged state 𝐴∗ that defines the different GPDs.

In terms of the SDHEP framework, as described in Sec. 2, the BH and GPD subprocesses are
just the first two leading channels of 𝐴∗, so both are naturally described using the two-stage picture
in the diffractive and SDHEP frames, respectively. In both frames, the relevant initial states for the
azimuthal angle 𝜙𝑆 or 𝜙 are put along the 𝑧 axis, so the dependence of the amplitude on 𝜙𝑆 or 𝜙 is
simply determined by the initial-state helicity,

𝐹ℎ→ℎ′𝐴∗
𝜆ℎ

(𝑡, 𝜉, 𝜙𝑆) = 𝑒−𝑖𝜆ℎ𝜙𝑆𝐹ℎ→ℎ′𝐴∗
𝜆ℎ

(𝑡, 𝜉, 0),
𝐻𝐴∗𝐵→𝐶𝐷

𝜆𝐴𝜆𝐵
(𝑠, 𝜃, 𝜙) = 𝑒𝑖 (𝜆𝐴−𝜆𝐵 )𝜙𝐻𝐴∗𝐵→𝐶𝐷

𝜆𝐴𝜆𝐵
(𝑠, 𝜃, 0). (5)

When computing physical observables, one needs to square Eq. (3) and trace over the spin density
matrices for the incoming particles, i.e.,

∑
{𝜆} 𝜌

(ℎ)
𝜆ℎ𝜆

′
ℎ

𝜌
(𝐵)
𝜆𝐵𝜆

′
𝐵

M𝜆ℎ𝜆𝐵
M∗

𝜆′
ℎ
𝜆′
𝐵

, which causes different ℎ
and 𝐵 helicities as well as different 𝐴∗ channels to interfere, giving rise to a variety of azimuthal
modulations in 𝜙𝑆 and 𝜙. For instance, for a nucleon target with transverse spin 𝑆𝑇 , the interference
of 𝜆ℎ = ±1/2 leads to cos 𝜙𝑆 and sin 𝜙𝑆 modulations, while the interference between two (𝐴∗, 𝐵)
channels of helicities (𝜆𝐴, 𝜆𝐵) and (𝜆′

𝐴
, 𝜆′

𝐵
) would lead to the azimuthal modulations cos[(Δ𝜆𝐴 −

Δ𝜆𝐵)𝜙] and sin[(Δ𝜆𝐴 − Δ𝜆𝐵)𝜙], with (Δ𝜆𝐴,Δ𝜆𝐵) ≡ (𝜆𝐴 − 𝜆′
𝐴
, 𝜆𝐵 − 𝜆′

𝐵
).

It is an important observation that 𝜙 modulations arise from the interference of different 𝐴∗

channels. Since the BH has 𝜆𝛾
𝐴
= ±1 (at leading power) while the unpolarized and polarized GPDs,

𝐹 and 𝐹, respectively, both have 𝜆[𝑞�̄� ]
𝐴

= 𝜆
[𝑔𝑔]
𝐴

= 0, their interference yields cos 𝜙 and/or sin 𝜙
modulations as a clear signature of the GPDs. The transversity GPDs 𝐹𝑇 give 𝜆[𝑞�̄� ]𝑇

𝐴
= ±1 or

5
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𝜆
[𝑔𝑔]𝑇
𝐴

= ±2, whose interference with the 𝜆𝛾
𝐴
= ±1 can lead to more 𝜙 modulations, similarly for

high-twist GPDs. On the other hand, in the decomposition of the GPD 𝐹 into the 𝐻 and 𝐸 GPDs
(similarly for 𝐹 and transversity GPDs), the 𝐻 and 𝐸 control different helicity configurations for the
hadron diffraction, so they give different contributions to the cos 𝜙𝑆 and sin 𝜙𝑆 modulations which
can help separate them from each other [42].

As a specific example, we present the azimuthal modulation in the real photon electroproduction
process (or, BH+DVCS) within the next-to-leading-power accuracy (i.e., with 𝑚 ≤ 2),

𝑑𝜎
𝛾
𝑒

𝑑𝑡 𝑑𝜉 𝑑𝜙𝑆 𝑑 cos 𝜃 𝑑𝜙
=

1
(2𝜋)2

𝑑𝜎
𝛾,unp.
𝑒

𝑑𝑡 𝑑𝜉 𝑑 cos 𝜃

[
1 + 𝑃𝑒𝑃𝑁 𝐴

LP
𝐿𝐿 + 𝑃𝑒𝑆𝑇𝐴

LP
𝑇𝐿 cos 𝜙𝑆

+
(
𝐴NLP
𝑈𝑈 + 𝑃𝑒𝑃𝑁 𝐴

NLP
𝐿𝐿

)
cos 𝜙 +

(
𝑃𝑒𝐴

NLP
𝑈𝐿 + 𝑃𝑁 𝐴

NLP
𝐿𝑈

)
sin 𝜙

+ 𝑆𝑇
(
𝐴NLP
𝑇𝑈,1 cos 𝜙𝑆 sin 𝜙 + 𝐴NLP

𝑇𝑈,2 sin 𝜙𝑆 cos 𝜙
)

+ 𝑃𝑒𝑆𝑇

(
𝐴NLP
𝑇𝐿,1 cos 𝜙𝑆 cos 𝜙 + 𝐴NLP

𝑇𝐿,2 sin 𝜙𝑆 sin 𝜙
) ]

(6)

where 𝑃𝑒 and 𝑃𝑁 are the net helicities of the electron and nucleon beams, respectively. The forms
of the unpolarized differential cross section 𝑑𝜎𝛾,unp.

𝑒 and azimuthal asymmetry coefficients 𝐴’s can
be found in Ref. [42]. They depend in a simple way on the GPDs and can be extracted by azimuthal
projections from data.

A similar result for the dilepton photoproduction process has also been worked out in Ref. [42].
For other processes, the BH channels are not as important so the azimuthal modulations arise from
the interference of different GPDs or the 𝐵 helicities in the case of photoproduction processes. The
SDHEP framework gives not only a simple and clear azimuthal formulation, but also a consistent
choice of the light-cone vector 𝑛 and GPD definitions, and therefore the GPDs extracted from
various processes can be directly compared.

4. Extracting the 𝑥-dependence of GPDs

GPDs enter physical observables with the range of their 𝑥-integration from −1 to 1. For
example, the asymmetries in Eq. (6) depend only on such “moment” integrals of GPDs,{

H , E, H̃ , Ẽ
}
(𝜉, 𝑡) =

∑︁
𝑞

𝑒2
𝑞

∫ 1

−1
𝑑𝑥

{
𝐻𝑞,+, 𝐸𝑞,+, 𝐻𝑞,+, 𝐸𝑞,+} (𝑥, 𝜉, 𝑡)

𝑥 − 𝜉 + 𝑖𝜖 , (7)

where the ‘+’ superscripts refer to charge-conjugation-even GPD combinations,

𝐹𝑞,+(𝑥, 𝜉, 𝑡) = 𝐹𝑞 (𝑥, 𝜉, 𝑡) ∓ 𝐹𝑞 (−𝑥, 𝜉, 𝑡), (8)

with ∓ for 𝐹 = 𝐻 or 𝐸 and 𝐹 = 𝐻 or 𝐸 , respectively. While the proper choice of the SDHEP
frame makes the azimuthal modulations simple, the extraction of GPDs is only up to such integrals
that result from the dynamics of the particular process. Since it is simple to construct analytic
functions 𝑆(𝑥, 𝜉, 𝑡), called shadow GPDs [39], that satisfy all known features of GPDs, such as the
polynomality, trivial forward limit, and giving zero contribution to the integral in Eq. (7), inverting
an 𝑥-dependent GPD solution from Eq. (7) is an ill-defined and singular problem.

6
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This singularity is due to the leading-order scaling property of such GPD moments. It is
similar to the scaling phenomenon in inclusive processes and is a result of the fact that the internal
propagators in the hard part are directly connected to two external lightlike momenta on either
end [7]. External observables like 𝜃 simply do not enter the hard kernel in the GPD convolution
in Eq. (4). To have enhanced sensitivity to the GPD 𝑥-dependence, one thus needs to break the
scaling at leading order. This, unfortunately, does not happen to most of the known 2 → 3 SDHEPs
listed in Sec. 2. Two known 2 → 3 SDHEPs with non-scaling GPD integrals are the diphoton
mesoproduction in nucleon-pion scattering [36, 38], 𝑁 (𝑝) + 𝜋(𝑝2) → 𝑁 ′(𝑝′) + 𝛾(𝑞1) + 𝛾(𝑞2), and
photon-pion pair photoproduction in nucleon-photon collision [7, 33–35, 37], 𝑁 (𝑝) + 𝛾(𝑝2) →
𝑁 ′(𝑝′) + 𝜋(𝑞1) + 𝛾(𝑞2).

In the hard scattering diagrams of the diphoton mesoproduction, the two photons can be
radiated from different quark lines. When 𝑞𝑇 ≫

√
−𝑡, the two quark lines must be connected by a

hard gluon that transmits the 𝑞𝑇 flow. This generates a new GPD integral besides Eq. (7),

𝐼 (𝜉, 𝑡; 𝑧, 𝜃) =
∫ 1

−1
𝑑𝑥

𝐹+(𝑥, 𝜉, 𝑡)
𝑥 − 𝑥𝑝 (𝜉, 𝑧, 𝜃) + 𝑖𝜖 sgn

[
cos2(𝜃/2) − 𝑧

] , (9)

with a new pole 𝑥𝑝 that depends on 𝜃 (or equivalently, 𝑞𝑇 ),

𝑥𝑝 (𝜃) = 𝜉
[

1 − 𝑧 + tan2(𝜃/2) 𝑧
1 − 𝑧 − tan2(𝜃/2) 𝑧

]
. (10)

Varying 𝜃 shifts this pole around in the DGLAP region of the GPDs, causing an entanglement
between the GPD 𝑥 dependence and the observable 𝜃 (or 𝑞𝑇 ) distribution. The second process is
related to the first one by a kinematic crossing, so contains a similar integral to Eq. (9), but with the
pole moving in the ERBL region, so gives complementary sensitivity.
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Figure 2: (a) The 𝑞𝑇 distributions for the diphoton cross section, and (b) the cos 𝜃 distributions for the
photoproduction cross section and polarization asymmetries, evaluated using different GPD models.

Both processes can distinguish shadow GPDs from real ones. To demonstrate this, we construct
some GPD models by starting with the Goloskokov-Kroll model [43–46] (𝐻0, 𝐻0). Adding analyt-
ically constructed shadow GPDs leads to a set of model GPDs (𝐻0, 𝐻1, 𝐻2, 𝐻3) and (𝐻0, 𝐻1, 𝐻2),
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which give effectively the same contribution to the DVCS-type processes. We calculate the differ-
ential observables for both processes using these model GPDs. For the diphoton mesoproduction,
since pion is spin zero, one can only measure an unpolarized cross section (unless the proton carries
a transverse spin). This is shown in Fig. 2(a) for the J-PARC kinematics. For the photon-pion
photoproduction, one can have additional polarization asymmetries when the photon is circularly
or linearly polarized, giving more independent constraints on the GPDs, as shown in Fig. 2(b) for
the JLab Hall-D kinematics. Clearly, in both cases, those different GPD models can be separated
by measuring both the magnitude and shapes of the different observables.

Beyond 2 → 3 SDHEPs, one can readily have more processes at 2 → 4 level with non-
scaling hard kernels. Some simple examples are (1) dilepton electroproduction process (or double
DVCS) [21–23, 47], 𝑝+𝑒 → 𝑝+𝑒+ℓ++ℓ−, (2) diphoton electroproduction [28], 𝑝+𝑒 → 𝑝+𝑒+𝛾+𝛾,
and (3) photon-dilepton pair photoproduction, 𝑝 + 𝛾 → 𝑝 + 𝛾 + ℓ+ + ℓ−. Most of such processes
remain un-studied. They are generally more kinematically involved and more difficult to calculate
or measure experimentally.

5. Summary

In terms of the SDHEP framework, we briefly reviewed the strategy to overcome the challenges
for separating different GPDs and the extraction of their 𝑥-dependence. We have shown that using
azimuthal modulations can help disentangle BH and GPD subprocesses as well as GPDs of different
spin and parity structures. For the inversion problem of extracting the 𝑥-dependence of GPDs, it is
important to study processes that yield non-scaling hard parts in the GPD integrals.

The consistent and process-independent definition of GPDs in the SDHEP framework paves
the way towards a global analysis of GPDs from experimental data. Similarly to that of parton
distribution functions and TMDs, one also needs to combine multiple processes in the global analysis
to disentangle different parton flavors and probe different charge conjugation GPD combinations.
Differently from parton distribution functions, though, GPDs also depend on two extra hadronic
variables, 𝜉 and 𝑡. It is therefore important to use experiments across a wide range of kinematics to
extend the 𝜉 and 𝑡 coverage.

Because of the exclusive nature, while GPDs are defined as twist-2 distributions at the amplitude
level, their appearance at the cross section level is equivalent to high-twist contributions. As a
result, the associated event rate drops quickly as one goes to higher energies, making a precision
measurement very challenging. On the other hand, due to the factorizability condition, 𝑞𝑇 ≫

√
−𝑡,

a higher-energy experiment is needed to extend the measurements to the larger-𝑡 region, enabling
the reliable Fourier transform to derive the spatial distribution of partons inside a confined hadron.
Overcoming this challenge is essential for a practical realization of the tomographic program from
the reliable extraction of GPDs.

This work is supported in part by the U.S. Department of Energy (DOE) Contract No. DE-
AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab.
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