R. Caravita*, S. Alfaro Campos, M. Auzins, M. Berghold, B. Bergmann, P. Burian,
R.S. Brusa, A. Camper, F. Castelli, G. Cerchiari, R. Ciurylo, A. Chehaimi, G. Consolati, M. Doser, K. Eliaszuk, R. Ferguson, M. Germann, A. Giszczak, L.T. Glöggler, L. Graczykowski, M. Grosbart, F. Guatieri, N. Gusakova, F.P. Gustafsson, S. Haider, S. Huck, C. Hugenschmidt, M. Janik, T. Januszek, G. Kasprowicz, K. Kempny, G. Khatri, L. Klosowski, G. Kornakov, V. Krumins, L. Lappo, A. Linek, S. Mariazzi, P. Moskal, M. Münster, P. Pandey, D. Pecak, L. Penasa, V. Petracek, M. Piwinski, S. Pospišil, F. Prelz, S.A. Rangwala, T. Rauschendorfer, B.S. Rawat, B. Rienacker, V. Rodin, O. Rohne, H. Sandaker, S. Sharma, P. Smolyanskiy, T. Sowiński, D. Tefelski, M. Volponi, C.P. Welsch, M. Zawada, J. Zielinski and N. Zurloet al. (click to show)
Abstract
The AEgIS experiment at CERN is pioneering measurements of gravity, spectroscopy, and interferometry using pulsed antimatter atomic sources. This work provides an overview of the AEgIS experimental setup
and highlights recent advancements in antihydrogen production, positronium laser cooling, and the creation of antiprotonic atoms. Key technological developments, including the overhaul of the control system and its impact on precision experiments, are reviewed. Future perspectives for AEgIS before CERN Long Shutdown 3 and beyond are summarized.