

Measurement of Ξ^- Polarization in the $K^-p \to \Xi^-K^+$ Reaction at 1.8 GeV/c

B.M. Kang,^{1,*} J.K. Ahn,¹ W.S. Jung,¹ Y. Ichikawa,^{2,3} S.W. Choi,¹ M. Fujita,³ S. Hasegawa,³ S. Hayakawa,² S.H. Hwang,⁴ K. Hicks,⁵ Y. Ishikawa,² S. Kajikawa,² K. Kamada,² S.H. Kim,⁶ T. Kitaoka,² J.Y. Lee,⁷ T. Morino,² F. Oura,² H. Sako,³ T. Sakao,² M. Saito,² S. Sato,³ H. Tamura,^{3,2} K. Tanida,³ T. Takahashi,⁸ M. Ukai,⁸ S. Wada,² T.O. Yamamoto³ and S.B. Yang¹

E-mail: kangbm@korea.ac.kr

The polarization of a Ξ^- baryon produced in the $p(K^-,K^+)\Xi^-$ reaction offers critical insights into the double-strangeness exchange mechanism. Since polarization reflects the spin-flip amplitude of the reaction, it helps us describe the reaction mechanism involving high-spin resonances, which are expected to dominate in the forward region. We have measured the cross-section for the $K^-p \to K^+\Xi^-$ reaction and Ξ^- polarization in the forward angular region at 1.8 GeV/c. We present preliminary results from J-PARC E42.

The XVIth Quark Confinement and the Hadron Spectrum Conference (QCHSC24) 19-24 August, 2024
Cairns Convention Centre, Cairns, Queensland, Australia

¹Department of Physics, Korea University, Seoul 02841, Republic of Korea

²Department of Physics, Tohoku University, Sendai 980-8578, Japan

³Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan

⁴Korea Research Institute of Standards and Science, Daejeon 34113, Korea

⁵Department of Physics & Astronomy, Ohio University, Athens, Ohio 45701, USA

⁶Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea

⁷Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea

⁸Institute of Particle Nuclear Study, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

^{*}Speaker

1. Introduction

The absence of S=-2 meson forbids the t-channel Born-term diagram in the double-strangeness exchange process. As a result, s-channel Λ and Σ resonances contributes most significantly in the forward region. However, a bump structure observed in the forward differential cross-section suggests a more complex reaction mechanism. Contributions from high spin Λ and Σ resonances dominates the reaction amplitude, but the interactions among these resonances remain poorly understood due to the unknown coupling constants at the KNY and $K\Xi Y$ vertices, where Y represents either Λ or Σ including its excited states.

Despite the lack of data, many theoretical models have been proposed to describe the (K^-, K^+) reaction. One approach employs an effective Lagrangian based on a hybrid Regge-plus-resonance model[1], while another takes a phenomenological approach. In the latter model, a noticeable polarization intensity arises from the inclusion of some resonances[2]. Polarization measurements serve as a crucial test for refining and validating these models. Regardless of the model specifics, polarization characterizes the spin-flip and non-flip amplitude of the final state[3], which are essential to understanding the reaction mechanism. However, experimental data on polarization remain limited to bubble chamber experiments conducted in the 1960's and 1970's[4][5][6].

Since the double-strangeness exchange reaction is a strong interaction process, physically observable asymmetry, such as polarization asymmetry along the longitudinal or perpendicular direction, is prohibited. However, the reaction plane, defined as the cross-product of two momentum vectors, is a pseudo-vector and remains invariant under parity transformation. As a result, polarization asymmetry arises along the reaction plane. The decay asymmetry of daughter baryons produces a specific angular decay spectrum, allowing us to estimate the polarization of the produced hyperon.

Unlike the production process, the parity is not conserved in the Ξ weak decay. Since the π carries no spin, the daughter baryons (such as Λ or proton) inherit the corresponding spin component, resulting in a distinct angular distribution. The violation of parity conservation permits change in the angular momentum states, giving rise to decay asymmetry. The decay amplitude consist of two complex numbers: parity violating amplitude and parity conserving amplitude. From the normalization constraint and the freedom of phase selection, the degree of freedom are reduced to two. As a result, the decay asymmetry is represented with two real numbers: the decay asymmetry parameter α and phase shift ϕ . However, for practical purpose in describing decay asymmetry, it is more convenient to use β and γ where the relation $\beta/\gamma = \tan \phi$ holds. Additionally, the constraint $\alpha^2 + \beta^2 + \gamma^2 = 1$ is imposed to ensure proper normalization. Adopting these three parameters, the decay angular distribution of the $\Xi^- \to \Lambda \pi^-$ at the rest frame of Ξ^- can be given by:

$$\frac{dN}{d\cos\theta} = 1 + \alpha_{\Xi}\vec{P}_{\Xi} \cdot \hat{\Lambda}.\tag{1}$$

where θ is the angle between the reaction plane and $\hat{\Lambda}$, the Λ direction in Ξ^- rest frame. Note that since Ξ^- polarization is only allowed along the reaction plane, \vec{P}_{Ξ} is identical to the reaction plane vector multiplied by Ξ^- polarization. The Λ polarization vector is given by:

$$\vec{P}_{\Lambda} = \frac{(\alpha_{\Xi} + \cos\theta)\hat{\Lambda} + \beta_{\Xi}(\vec{P}_{\Xi} \times \hat{\Lambda}) + \gamma_{\Xi}\hat{\Lambda} \times (\vec{P}_{\Xi} \times \hat{\Lambda})}{1 + \alpha_{\Xi}\cos\theta},\tag{2}$$

Since the polarization of Λ from Ξ^- decay is determined, we obtain the proton decay spectrum:

$$I = 1 + \alpha_{\Xi} \vec{P}_{\Xi} \cdot \hat{\Lambda} + \alpha_{\Lambda} \hat{p} \cdot [(\alpha_{\Xi} + \vec{P}_{\Xi} \cdot \hat{\Lambda})\hat{\Lambda} + \beta_{\Xi} (\vec{P}_{\Xi} \times \hat{\Lambda}) + \gamma_{\Xi} \hat{\Lambda} \times (\vec{P}_{\Xi} \times \Lambda)]. \tag{3}$$

By defining three coordinate axes:

$$\hat{z} = \hat{\Lambda}; \quad \hat{x} = \frac{\hat{e} \times \hat{z}}{|\hat{e} \times \hat{z}|}; \quad \hat{y} = \hat{z} \times \hat{x}$$
 (4)

where $\hat{e} = \frac{\Xi^- \times \hat{K}^-}{|\hat{\Xi}^- \times \hat{K}^-|}$ represents the reaction plane, the intensity follows a liner distribution for for angles $(\phi_{\alpha}, \phi_{\beta}, \phi_{\gamma})$ and θ :

$$\begin{cases} I(\theta) = 1 + \alpha_{\Xi} P_{\Xi} \cos \theta \\ I(\phi_{\alpha}) = 1 + \alpha_{\Xi} \alpha_{\Lambda} \cos \phi_{\alpha} \\ I(\phi_{\beta}) = 1 + \frac{\pi}{4} P_{\Xi} \beta_{\Xi} \alpha_{\Lambda} \cos \phi_{\beta} \\ I(\phi_{\gamma}) = 1 + \frac{\pi}{4} P_{\Xi} \gamma_{\Xi} \alpha_{\Lambda} \cos \phi_{\gamma} \end{cases}$$
(5)

where ϕ_{α} , ϕ_{β} and ϕ_{γ} represent the angles between the proton and the z, x, y axes, respectively, in the Λ rest frame. Fig. 1 provides an intuitive representations of the polarization angles.

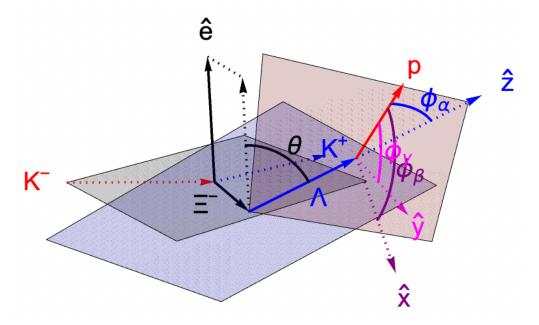


Figure 1: The polarization angles and decay planes.

2. **J-PARC E42**

We conducted J-PARC E42 at the K1.8 Beamline at J-PARC, as shown in Fig. 2(a). A 1.82 GeV/c K^- beam impinged on a polyethylene target CH₂. An outgoing K^+ particle in the the $(K^-, K^+)\Xi^-$ reaction was tagged using a forward dipole spectrometer.

The $\Xi^- \to \Lambda \pi^-$ decay was detected using a time projection chamber (HypTPC) in a superconducting (HS) magnet. Fig. 2(b) displays typical event of Ξ^- decay. The reconstructed invariant mass of the $p\pi$ and $\Lambda\pi$ systems are displayed in Fig. 3. The incident K^- beam(magenta), the scattered K^+ (dark gray), π from Ξ and Λ , and proton tracks are well reconstructed.

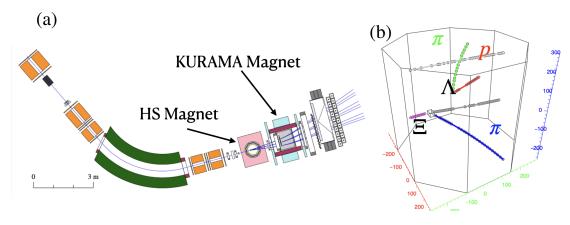
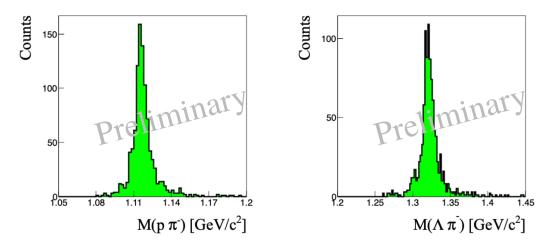



Figure 2: (a) Schematics of the K1.8 Beamline and (b) a typical event display of Ξ decay in HypTPC.

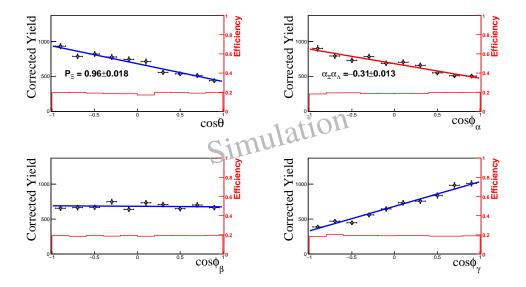


Figure 3: Reconstructed invariant mass spectrum of Λ and Ξ .

3. Polarization analysis with Ξ^- decay

Accurate polarization estimation requires precise measurements of each particle;s momentum. Angles involved in the polarization measurements are defined in the center-of-mass frame, which is highly affected by momentum bias. The reaction plane is not directly related to the bias in momentum magnitude, but can be blurred by Fermi motion in 12 C within the CH₂ target. By defining the reaction plane as $\hat{e} = \frac{\hat{\Xi}^- \times \hat{K}^-}{|\hat{\Xi}^- \times \hat{K}^-|}$, this blurring effect can be reduced.

We studied the experimental acceptance using the E42 Geant4 simulation software. The K^- and K^+ were taken from real data to reduce spectrometer acceptance effect in TPC simulation. The Ξ^- momentum was defined as $\vec{K}^- - \vec{K}^+$. We tested the simulation with three different polarization values, $P_{\Xi} = -1$, 0 and +1. The simulation data passed through the same analysis pipeline as real data. The resulting polarization angle distributions from Geant4 data analysis are shown in Fig. 4. Since three angles, θ , ϕ_{β} and ϕ_{γ} , share the same fitting parameter, P_{Ξ} , we perform a simultaneous unbinned fit to determine the polarization. We nearly recovered the initial polarization, which was set to 1. For datasets where the polarization was set to 0 or -1, we also successfully recovered the initially assigned values.

Figure 4: Polarization angle distribution from simulation analysis. The blue line indicates the simultaneous unbinned fit result of θ , ϕ_{β} and ϕ_{γ} , while the red line represents the unbinned fit result for ϕ_{α}

Fig. 5(a) presents the statistical error in E42 with the CH₂ target. Although carbon components are present, the statistical error is significantly lower compared to previous experiments. The E42 data points are shown alongside theoretical expectations from S.H. Kim *et al.* [1]. For the P_{Ξ} values shown in the figure, α_{Ξ} parameter used in previous experiments differs slightly from the modern value; this difference has been compensated accordingly.

The angle ϕ_{α} is independent of polarization but only depends on the product of the decay asymmetry parameters, α_{Ξ} and α_{Λ} , which are already well-established. Taking advantage of this, we validate our analysis for real data by properly reconstructing the ϕ_{α} distribution. We expect a slope parameter of $\alpha_{\Xi}\alpha_{\Lambda}=-0.291[7]$ for the $\cos\phi_{\alpha}$ distribution. Fig. 5(b) shows that the reconstructed Λ decay spectrum's slope parameter is within the statistical error, indicating that our analysis is consistent with Particle Data Group values. However, the remaining three angles related to P_{Ξ} are not shown in this proceeding.

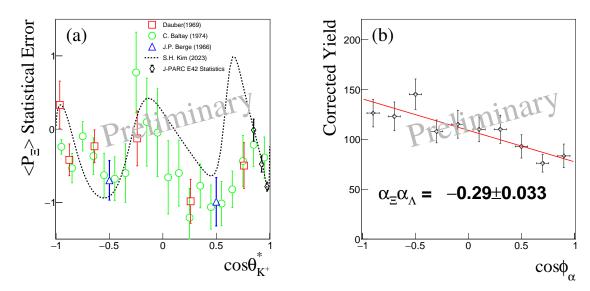


Figure 5: (a) E42 statistics compared to previous experiments, and (b) Λ decay asymmetry measured in E42.

4. Summary

The polarization of the produced Ξ in the (K^-, K^+) reaction provides crucial insights into the underlying spin structure of the reaction. This is particularly important for the double-strangeness reaction, which is dominated by the interaction of high spin Λ and Σ resonances, yet our knowledge of the KYN and $KY\Xi$ vertices remains limited. Measuring the polarization of Ξ^- produced in a KN reaction would provide key insights into the reaction mechanism, but available data have been limited.

J-PARC E42 has measured the Ξ^- polarization in the forward production region, collecting approximately 800 events. This surpasses previous measurements, with had a total of around 200 events. By analyzing the decay asymmetry of $\Lambda \to p\pi^-$, we confirmed that our preliminary results align with established values. Our new measurement on the Ξ^- polarization will be reported soon.

References

- [1] S.H. Kim et al., Phys. Rev. C 107, 065202 (2023).
- [2] D.A. Sharov et al., Eur. Phys. J. A 47, 109(2011).
- [3] B.C. Jackson et al., Phys. Rev. C 91, 065208 (2015).
- [4] C. Baltay et al., Phys. Rev. D 9, 49(1974).
- [5] J.P. Berge et al., Phys. Rev. 147, 945 (1966).
- [6] P.M. Dauber et al., Phys. Rev. 179, 1262(1969).
- [7] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).