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NA61/SHINE is a fixed-target experiment to study hadron production in hadron-nucleus and

nucleus-nucleus collisions at the CERN SPS. Due to the very good acceptance and particle iden-

tification in forward direction, NA61/SHINE is well suited for measuring particle production to

improve the reliability of air shower simulations. Data with proton and pion beams have been

taken in 2007 and 2009. First analysis results for the pion yield in proton-carbon interactions at

30 GeV will be shown and compared to predictions from models used in air shower simulations.
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1. Introduction

Ultra-high energy cosmic rays initiate extensive air showers (EAS) when they collide with the
nuclei of the atmosphere. The interpretation of EAS data as for instance recorded by the Pierre
Auger Observatory [3] or the KASCADE air shower array [4] relies to a large extent on the under-
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Figure 1: Particle types and energies
involved in the last interaction leading
to muon detected at ground level (E0 =

1019 eV, detection distance≈ 1 km) [9].

standing of these air showers and specifically on the
correct modeling of hadron-air interactions that occur
during the shower development. The relevant particle
energies span a wide range from primary energies of
& 1020 eV down to energies of 109 eV. The mesons
that decay to muons at ground level typically originate
from low energy interactions in the late stages of an
air shower. Depending on the primary energy and de-
tection distance, the corresponding interaction energies
are between 10 and 1000 GeV (cf. Fig 1). As it has
been noted in e.g. [5–8], the modeling of low energy in-
teractions contribute at least 10% to the overall uncer-
tainty of the predicted muon number at ground. Since
these energies are within the reach of fixed target exper-
iments, precise measurements of hadronic particle pro-
duction at, for instance, the Super Proton Synchrotron
at CERN can help to diminish the uncertainties of air
shower simulations.

An example of current difficulties to describe air shower measurements at ultra-high energies
is the excess of the number of ground level muons wrt. to air shower simulations [10–12] as re-
ported by the Pierre Auger Observatory [13]. A solution to this inconsistency was proposed in [14],
where it was pointed out that an increased production of baryons and anti-baryons in hadron-air

lg(E/GeV)
2 4 6 8 10 12

(a
nt

i−
)b

ar
yo

n 
en

er
gy

 fr
ac

tio
n

0

0.05

0.1

0.15

0.2

0.25

0.3
EPOS 1.99
SIBYLL2.1
QGSJETII

QGSJET01

p [GeV/c]
0 50 100 150 200 250 300 350

nu
m

be
r 

of
 tr

ac
ks

1

10

210

310

410

510

610

710

 EPOS 1.99±π

 QGSJET01±π

charged baryons EPOS 1.99

charged baryons QGSJET01

Figure 2: Left panel: Energy fraction of produced baryons and anti-baryons inπ-air collision as a function
of pion momentum. Right panel: Expected number of charged tracks as a function of secondary momentum
for the NA61π−-C data set at 350 GeV/c.
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collisions, would lead to an increase in the number of muons at ground level. As can be seen in
Fig. 2, an enhanced (anti-)baryon production, as e.g. currently implemented in the EPOS-model,
should be easily distinguishable from previous model assumptions at fixed target energies.

Unfortunately, there exist no comprehensive and precise particle production measurements for
the most numerous projectile in air showers, theπ-meson. Therefore, new data with pion beams at
158 and 350 GeV/c on a thin carbon target (as a proxy for nitrogen) has been recently collected by
the NA61 experiment at the SPS.

2. The NA61/SHINE Experiment

NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) [1] is an experiment at
the CERN SPS using the upgraded NA49 hadron spectrometer. Among its physics goals are

p year Nint

[GeV/c] [106]

π−-C 158 2009 3.6
π−-C 350 2009 4.7
p-C 31 2007 0.6
p-C 31 2009 4.8
p-p 13 2010 0.6
p-p 20 2009 1.7
p-p 30 2009 2.6
p-p 40 2009 4.2
p-p 80 2009 3.6
p-p 158 2009 2.8
p-p 158 2010 43.9

Table 1: Number of thin target inter-
action triggers collected by NA61.

precise hadron production measurements for improving
calculations of the neutrino beam flux in the T2K neu-
trino oscillation experiment [2] as well as for more reliable
simulations of cosmic-ray air showers. Moreover, p+p,
p+Pb and nucleus+nucleus collisions will be studied ex-
tensively to allow for a study of properties of the onset of
de-confinement and search for the critical point of strongly
interacting matter.

The NA61 detector uses large time-projection-
chambers to measure the particle charges and momenta
as well as their energy loss for particle type identification.
Large scintillator walls provide an estimate of the particle’s
squared mass from the time-of-flight through the detector.
The momentum resolution,σ(1/p) = σ(p)/p2, is about
10−4 (GeV/c)−1 at full magnetic field and the tracking ef-
ficiency is better than 95%.

NA61 started data taking in 2007. After a pilot run
with proton on carbon at 31 GeV/c, the data acquisition
system has been upgraded during 2008 to increase the event processing rate by a factor of≈ 10.
In the last two years, NA61 took data at beam energies from 13 to 350 GeV with proton and pion
projectiles and proton and carbon targets (cf. Tab. 2).

3. Data Analysis

In this paper we present preliminary results on the inclusive production of positive and negative
pions from p+C interactions at 31 GeV/c recorded during the 2007 pilot run. The pion spectra have
been obtained using three independent analysis techniques: Firstly, with the so-calledh− method all
negative hadrons produced in a collision are assumed to be pions and the small contribution of other
species is corrected for using simulations. Due to the largecontribution from protons, this method
can only be applied to determine theπ− spectra. Secondly, with the dE/dx methodπ-mesons
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Figure 3: The π+ (upper panel) andπ− (lower panel) spectra in p+C interactions at 31 GeV/c compared
to FLUKA 2008 (red histogram), GHEISHA2002 (green histogram), and URQMD1.3.1 (blue histogram)
models. The spectra are normalized to the total number of inelastic collisions.

are identified explicitly using the energy deposit measuredin the TPCs. This method works only
in momentum regions where Bethe-Bloch bands do not overlap.Finally, using the dE/dx-plus-
ToF method,π± can be identified over a wide momentum range using the combination of energy
loss andm2 from the time-of-flight measurement. This method provides the most precise particle
identification, but it is limited to the angular acceptance of the time-of-flight detectors. Using a
combination of all three methods, NA61 is able to measureπ±-spectra with a large acceptance in
angle and momentum.

4. Results

Preliminaryπ±-spectra in p+C interactions at 31 GeV/c from the 2007 pilot run are presented
in Fig. 3. The systematic uncertainty of these preliminary spectra is estimated to be≤ 20%.

As a first application of these measurement, it is interesting to compare the spectra to the
predictions of event generators for hadronic interaction.Here we concentrate on hadronic in-
teraction models that have been frequently used for the interpretation of cosmic ray data, i.e.
FLUKA 2008 [15], URQMD1.3.1 [17] and GHEISHA2002 [16]. All three models are part of the
CORSIKA [18] framework for the simulation of air showers and are typically used to generate
hadron-air interactions at energies below 80 GeV. To assurethat all relevant settings of the genera-
tors are identical to the ones used in air shower simulations, we simulated single p+C interactions
directly with CORSIKA in the so-calledinteraction testmode. As can be seen in Fig. 3, GHEISHA

simulations can not describe our measurements at all production angles and thus this measurement
corroborates earlier findings of the short-comings of GHEISHA (see e.g. [8]). The URQMD gener-
ator can describe our data better, but fails to reproduce thespectra at low momenta and production
angles. The best agreement is found for the spectra generated with FLUKA , that show a good
overall agreement with our data.
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