PROCEEDINGS

OF SCIENCE

Status of the AuroraScience Project

Francesco Di Renzo*'
University of Parma and INFN
E-mail: francesco.direnzo@unipr.it

AuroraScience is a research project aiming at developing a computer architecture which benefits
from both state of the art components/solutions (multi-core processors, liquid cooling, InfiniBand)
and a custom network (an FPGA-based implementation of a 3-D torus). We report on the status
of the project.

XXIX International Symposium on Lattice Field Theory
July 10 V 16 2011
Squaw Valley, Lake Tahoe, California

*Speaker.
TOn behalf of the AuroraScience Collaboration

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:francesco.direnzo@unipr.it

Status of the AuroraScience Project Francesco Di Renzo

1. AuroraScience basic facts and goals

AuroraScience[1] is a project at the crossroads of Computational Sciences and Computer Ar-
chitecture. It officially started on July 31st 2009.

The goals were:

o the design of an effective High Performance Computing (HPC) architecture (Aurora) suitable
to support scientific applications demanding high computing capabilities;

o the installation of a prototype demonstrating the effectiveness of the architecture and provid-
ing clear evidence of the scalability to a larger system;

o the exploitation of the prototype in a number of relevant scientific fields in which HPC is a
key issue;

e the dissemination of technical skills and knowledge in HPC related areas.

Joining custom and commodity solutions was the fingerprint of the project. This could be
achieved by setting up a joint Research and Development program with an industrial partner. A
suitable industrial partner was found by signing a Letter of Intent with Eurotech SpA. The company
had previous, qualified experience in collaborating with academic instututions in the field of HPC.
Moreover, Eurotech had signed a Memorandum of Understanding over several years of technolog-
ical collaboration with the Intel company, to cooperate on HPC developments.

AuroraScience is a joint-project of INFN (Istituto Nazionale di Fisica Nucleare) and PAT
(Provincia Autonoma di Trento); the latter manages it through the Fondazione Bruno Kessler
(FBK). It was devised to be made of two phases; the first phase was supposed to last up to 24
months and at the time of the Lattice conference the application for the second phase had been
submitted since April 28th 2011. At the deadline at which the Conference proceedings are due,
a final decision for the second phase has not yet been taken by INFN and FBK. In the meantime,
work is nevertheless going on, with partial support (covering personnel hired on the project) having
being extended till the end of the year.

2. The Aurora architecture

The overall architectural design of the Aurora system was based on previous experience of
parallel machines for scientific applications (mainly APE machines, to which members of Aurora-
Science gave substantial contributions). The architectural features of Aurora are the following

e The basic building block is the Aurora board, hosting two Intel CPUs and having a fair
amount of memory on-board (possible configurations are multiples of 6 GB). At the start
of the project it was envisaged that more than one generation of processors would be avail-
able as the project would progress: first nodes were based on Nehalem processors; current
technology is based on Westmere processors; we will receive the first nodes based on Sandy-
Bridge in one month from the time at which these Conference Proceedings are written. The

Status of the AuroraScience Project Francesco Di Renzo

distinctive feature of the board is its connectivity: on top of a 40-Gbit/s Infiniband adapter,
it hosts 1 FPGA (Altera Stratix IV GX230) and 6 PMC-Sierra quad-link PHYs, enabling
the deployment of the FPGA-based toroidal network firmware. Each board has its coldplate,
ensuring liquid cooling.

e 16 boards make a half-chassis, together with a root-card (on the top) and a DC/DC trayer (on
the bottom). All the elements are physically connected (data signals, power) by a backplane.
Infiniband connectivity is provided via a 36-ports switch hosted in the root-card, which also
controls power management and monitoring functionalities. The sub-chassis is the basic
Aurora module, equipped with power supply, liquid cooling and connectivity (actually within
a sub-chassis the toroidal network can close in up to two directions).

e Liquid cooling is an Aurora key feature. Without it, it would not be possible to ensure the
high computing density which is an Aurora fingerprint. Energy consumption is strongly cut
by this choice. It should be pointed out that the so-called quick-disconnect technology has
been for the first time used in HPC: boards are grouped in groups of four, but each can be
disconnected at any time, without halting the system. It should also be mentioned that at
the FBK laboratory where the system is installed, due to an efficient design of the cooling
infrastructure, we have free cooling whenever the air temperature is below 20°C.

e Two half-chassis sit back to back to form a chassis. This is the basic module on which one
has full toroidal connectivity (we can close all three directions).

e Eight chassis make a rack, which could be replicated in large installations. One rack is
the configuration we are aiming at deploying in the second phase, in addition to the present
system.

Figure 1: The Aurora board, half-chassis and rack.

The final first phase prototype is built of three' fully populated chassis, for a total peak perfor-
mance of 15 TFlops. The capability to overcome the problems that were inherent to the startup of

Iplus one, actually; we still have an extra half-chassis, hosting the prototypal boards.

Status of the AuroraScience Project Francesco Di Renzo

the project gave convincing evidence of the overall robustness of the design.

2.1 Aurora custom torus network

Aurora fingerprint is the union of high standard commodity structure with a custom network.
The Aurora toroidal network is a dedicated porting of the FTNW project. FTNW is an FPGA-based
implementation of a light-weight communication network to tightly interconnect commodity multi-
core CPUs in a 3d torus topologys; it is a project by M. Pivanti, F. Schifano and H. Simma[2, 3].
FTNW had been made available to the QPACE project before; in QPACE the FlexIO interface was
provided by IBM (that machine is based on the Cell processor). In Aurora everything is developed
within AuroraScience.

e The FTWN-project has been ported onto the Altera FPGA and the processor interface has
been adapted to the Intel CPU.

e [oading configuration-firmware on the FPGA is easy, thus fully enhancing the FPGA capa-
bility to easily update the design.

e The driver and the low-level library have been adapted and optimized for Intel CPU instruc-
tion set.

o The FTNW communication protocol is a very light one, requiring no explicit synchronization
between communicating processors. Namely (refere to Fig. 2)
— Procl provides (red action) credit to NWP1
— Data are (blue action) moved from ProcO to NWP0O
— NWPO (blue action) sends data to NWP1
— NWPI checks data for errors and (red action) sends back a ACK/NACK
— NWPI (blue action) moves data to Procl
— NWPI (blue action) notifies Proc1 that data are available

e While all the cores on a board share the same network processor, a virtual channels mecha-
nism enables efficient usage.

Figure 2: Basic FTNW communication steps.

Status of the AuroraScience Project Francesco Di Renzo

2.2 Aurora environment for users

Aurora environment customizes standard tools: the system is thus quite user-friendly.

e The computing nodes are reached by four servers, providing a variety of services. The system
has a partitioning mechanism: boards are grouped into partitions to exploit toroidal connec-
tivity. A dedicated queue-system gives access to the resources. The queue-system provides
facilities to best exploit both connectivity and the software layers that make the toroidal
network available to programmers. We also have a mechanism to always fully exploit the
resources: if for some reason some nodes can not group into a partition, they migrate to a
generic queue whose resources do not guarantee toroidal connectivity (notice that Infiniband
connectivity is in any case guaranteed).

o A NAS system based on 12+12 SAS disks (600GB faster disks and 2TB slower disks) pro-
vides both efficient runtime I/O and a fair amount of storage space.

e Compilers and MPI-environment are standard (e.g. gcc, icc, openMPI). At the programming
level, users can use both low-level (more efficient) atn communication primitives and high-
level TORUS and torMPI functions (the latter mimics MPI, while the former focuses on
nearest neighbor communications). Communications software stack is sketched in Fig. 3.

AURORA Communications

MPI_Cart_create(), MP! application with Torus application TORUS._init(), TORUS_Send
MPI_Cart_coords(Cartesian Topology PP TORUSZRe(c)\:'() - 0
WMPI_Cart TORUS N

atninit() atnCredit()

tormpi-lib torus-lib B atnTest() atnSend()
openMP MPI atn -
thread-lib MPI-lib P ATN-lib
Fd
(o]
gy Infiniband |2 ATN
emory
Intra-Node comm Inter-Node comm Nearest Neighbour

Figure 3: The communications software stack of Aurora.

3. Lattice QCD applications

To efficiently implement Lattice QCD applications on Aurora one has to face the basic chal-
lenge of balancing intra- and inter-node parallelism, as a direct consequence of the multi-core
structure of the computing node. To have an idea of Lattice QCD codes performances on Aurora
the interested reader is referred to another Lattice 2011 presentation[4].

3.1 IB and FTNW toghether in one application

Here we focus on a particualr issue: Aurora has two networks, and they can cooperate on a
single task. We quote one application, to be regarded as a mere example, admittedly biased by the

Status of the AuroraScience Project Francesco Di Renzo

scientific interests of the developers.

In the context of Numerical Stochastic Perturbation Theory[5], the order by order inversion of
the Dirac operator is coded in the following formula (this is simply the order by order expansion of
v =MDE, E being a source; v is expanded in perturbative orders because M - the Dirac operator
- has an order by order expansion, while the source & has no expansion)

w® — pO-1g
w1 = 0171, (0)
@ = -1 [M<2>1,,<o>+ M(l)l,,(l)}

y® = _pO-1 {Mml,,(m M@y Mu)l,,(z)]

n—1
Y = MO Yyl
J=0

e We notice that M(®~! is diagonal in momentum space, while the M) are almost diagonal
in configuration space. This suggests the strategy of going back and forth from momentum
space via FFT: everything which is dealing with M) (what occurs in brackets) will be com-
puted in configuration space, while we will perform an FFT before we apply M(®~! and an
inverse FFT to make the lll(i) available to following orders computations;

e when one y() has been computed, we have the chance to advance in the computation of the
(configuration space) brackets, i.e. computations in different space can overlap;

e the torus network is the natural candidate to perform communications needed to compute in
configuration space (everything is almost diagonal, with only nearest neighbor contributions
needed), while IB network can substain FFT.

This suggest the strategy which is sketched in Fig. 4:

FFTW communicator . .
2 rankinodecard . I . FFTW
1 rankjsocket 1 2 rank MPI
1 corefrank o
em||mm| HE BN
EEEN i B threads
EEEE Al A HE ENR
A A i
SOCKET 0) |SOCKET 1 i
TORUS communicator {6 cores) {6 cores) ‘3DT i A|B DATA
1 rank/nodecard TRANSFER
5 threads/sockat Modecard o
. 1 thread 3D Torus
1 cora/thread 2 x Westmere SOCKET 0 SOCKET 1 1 thread I8 RDMA

Figure 4: The computation/communication architecture of an application taking profit of both IB and custom
network. Left: the general structure of the two communicators. Middle: the overall distribution of resources
on a nodecard. Right: the matching of resources to tasks on a nodecard.

Status of the AuroraScience Project Francesco Di Renzo

e The overall MPI application has two communicators (which we refer to as FFT and TORUS
communicators).

e On each nodecard, we have three MPI processes, or ranks (if you take MPI jargon).

e Two ranks on each nodecard belong to the MPI communicator; they are single thread pro-
cesses, residing on two physical cores (one per socket).

e The third rank on each nodecard is a multi-thread process, taking the ten residual cores
available on the nodecard. Eight threads are actually in charge of computations; one core is
in charge of communications on the torus network; one core is in charge of the (RDMA) MPI
communications which make the FFT and TORUS communicators cross-exchange data.

We stress once again that this is a mere example. The two networks can cooperate and other
applications can benefit as well by the same opportunity (an application asking at some point for a
global scalar product is enough for providing another example).

Acknowledgments

The AuroraScience project is funded by the Provincia Autonoma di Trento and the Istituto
Nazionale di Fisica Nucleare, in the framework of an agreement with the Fondazione Bruno Kessler.
We wish to thank our collaborators at Eurotech and Intel. We are grateful to the members of QPACE
and PetaQCD for stimulating discussions. Lattice QCD software developments and applications
on Aurora are also supported by ITN STRONGnet (European Union Grant Agreement PITN-GA-
2009-238353).

References

[1] L. Scorzato, AuroraScience, PoS (Lattice2010) 039.
[2] http://sourceforge.net/projects/ftnw

[3] M. Pivanti, F. Schifano and H. Simma, An FPGA-based Torus Communication Network, PoS
(Lattice2010) 038.

[4] M. Brambilla, F. Di Renzo, M. Grossi, Efficiency on multi-core CPUs: the Wilson Dirac operator on
Aurora, PoS (Lattice2011) 302.

[5] F. DiRenzo and L. Scorzato, Numerical Stochastic Perturbation Theory for full QCD, JHEP 0410
(2004) 073 [arXiv:hep-1at/0410010].

