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1. Introduction

The observed universe has 6.1+0.3
−0.2×10−10 baryons for every black body photon [1], whereas in

a baryon symmetric universe, we expect no more that about 10−20 baryons for every photon [2]. It
is difficult to include such a large excess of baryons as an initial condition in an inflationary cosmo-
logical scenario [3]. The way out of the impasse lies in generating the baryon excess dynamically
during the evolution of the universe. Sakharov wrote down a set of three necessary conditions for
such a process to be possible: baryon number violation, CP and T violation, and out of equilibrium
evolution of the universe [4]. Efforts at generating an observable baryon excess when these condi-
tions are not satisfied have not been promising [5]. Since every Lorentz invariant field theory action
needs to be symmetric under the product CPT [6], we use CP-violation and T-violation interchange-
ably and ignore the possibility of explicit Lorentz violations or spontaneous breaking of CPT.

CP is violated in the standard model (SM) of particle physics by a phase in the Cabibo-
Kobayashi-Maskawa quark mixing matrix [7], and possibly by a similar phase in the leptonic
sector if the neutrinos are not massless [8]. The physical effects of these phases are supressed
by the smallness of the fermion masses. Baryon number is also violated in the SM by sphaeleron
effects in weak interactions [9], though the difference of baryon and lepton numbers is strictly
conserved unless the neutrinos have a Majorana mass. At the temperatures above the electroweak
transition, where the sphaeleron rates are high, baryon and antibaryons, therefore, equilibriate.
Since, however, the electroweak phase transition is weakly first order, the universe never goes out
of equilibrium enough to generate the observed baryon density through SM processes [5].

In principle, the SM has an additional source of CP violation arising from the effect of QCD
instantons. The presence of these finite action non-perturbative configurations in a non-abelian
theory often leads to inequivalent quantum theories defined over various ‘Θ’-vaccua [10]. Because
of asymptotic freedom, all non-perturbative configurations including instantons are strongly sup-
pressed at high temperatures where baryon number violating processes occur. Because of this, CP
violation due to such vaccuum effects do not lead to appreciable baryon number production.

This analysis points to the need to look for CP violation from beyond the standard model
(BSM). A promising experimental approach is to measure the static electric dipole moments of
elementary particles, which are necessarily proportional to their spin. Since under time-reversal
spin reverses sign but the electric dipole moment does not, a non-zero measurement would imply
CP violation. In this work, we concentrate on the electric dipole moment of the neutron (nEDM).

2. Operators

In the SM, CP violation arises from (i) the CKM phase in the charged current weak interac-
tions, and (ii) the Θ-term multiplying the topological charge density operator in the strong interac-
tion sector. In this section, we discuss the phenomenology of these and the leading BSM operators.

2.1 CKM phase

The CKM matrix describing quark-mixing under charged current interactions is arbitrary up
to quark field redefinitions that leave the rest of the Lagrangian unchanged. In the SM, this can
be used to rotate away any phase in the CKM matrix unless there are at least three non-degenerate
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Figure 1: One loop diagram involving squarks and neutralinos in a SUSY model that can give rise to a
electric dipole moment or a chromo-electric dipole moment to a quark. The external wavy line denotes a
generic gauge boson that can attach at various places in the diagram. Λ represents the heavy SUSY scale
where the loop effectively becomes pointlike, whereas v is the electroweak scale where the Higgs vacuum
expectation value breaks the electroweak symmetry.

generations of up and down type quarks, with non-zero values for the sines and cosines of the three
mixing angles [11]. Because of this, the CKM contribution to the quark electric dipole moment
(qEDM) are suppressed by the quark mass differences and mixing angles, and is only O(10−34)

e cm because of further partial cancellations between three-loop diagrams [12]. The contribution
to nEDM from weak diquark interactions within the neutron have been estimated to be a 100 times
larger than this [13], but is still far below experimental sensitivity of O(10−28) e cm.

2.2 Topological Charge

Even though the QCD Θ-term does not give rise to appreciable baryon number violation, it
does contribute to the electric dipole moment of baryons. The U(1)A axial chiral anomaly, however,
allows one to simultaneously change the Θ-term and redefine the fermion fields by a chiral phase,
without changing the physics. In the SM, such a rotation can remove all physical effects of a
similar term in the weak SU(2) sector that involves only the left chiral sector of the theory. For
a vector theory like QCD, however, all the quarks obtain masses through the Higgs mechanism,
and a rotation to remove Θ introduces phases into this mass matrix. The fermion phases are then
conventionally chosen such that the masses are positive and real. The value of Θ under this choice
of phases is called Θ̄, and is phenomenologically known to be close to zero rather than π [14].

For small Θ̄, its contribution to nEDM has been estimated to be 5.2× 10−16Θ̄ e cm in chiral
peturbation theory [14]. Since the current experimental limit is 2.9×10−26 e cm [15], this implies
|Θ̄| . 10−10. One can explain such an unnaturally small value by the ‘Peccei-Quinn’ (PQ) con-
struction of elevating Θ to a dynamical field: in the SM, the minimum of the potential is at PQ field
Θ̄ = 0.

2.3 Beyond the standard model

BSM theories can be parameterized by the effective low energy operators they introduce. Elec-
tric dipole moments of quarks are particularly interesting operators since, as discussed in Sec. 2.1,
these operators arise only at three-loops in SM. In BSM, they can arise at one-loop (Fig. 1) and
produce nEDMs of about 2.9×10−26 e cm [15]. Also, since they violate chirality, a phase rotation
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to make the masses real typically mixes the electric and magnetic dipole operators. CP violating
electric dipole moments coupling to electromagnetic, weak, and strong gauge bosons are, therefore,
generic unless the dipole moment sector is precisely ‘aligned’ with the mass sector.

Though formally of mass dimension 5, such chirality violating operators can appear only due
to the breaking of electroweak symmetry. One, therefore, expects them to be suppressed by the
ratio of the weak scale to the scale of BSM physics. Unsupressed operators appear at dimension 6
and typically involve four fermions or three powers of the gauge field strength tensor.

3. Model Estimates

As explained in Sec. 2.3, after choosing the field basis to make the mass terms real and posi-
tive, the major contributions to the nEDM come from the quark electric and chromoelectric dipole
moment operators in addition to topological charge effects induced by Θ:

S��CP = −iΘ̄
g2

16π2 GµνaG̃µνa

+ i edγ
u L̄σµνγ5Fµν H̃

ṽ
U + i edγ

d L̄σµνγ5Fµν H
v

D

+ igdG
u L̄σµνγ5λ

aGµν a H̃
ṽ

U + igdG
d L̄σµνγ5λ

aGµν a H
v

D+ · · · , (3.1)

where e and g are the electromagnetic and strong couplings, F and G represent the electromagnetic
and gluonic field strengths, L represents the left handed quark fields, U and D represent the right
handed up-type and down-type quarks, H and H̃ represent possibly distinct Higgs doublets whose
vacuum expectation values, v and ṽ (assumed real), break the electroweak symmetry, and dγ,G

u,d
represent the electric and chromoelectric dipole moments of the up and down quarks.

Model estimates of the effect of these terms show

dn ≈
8π2

M3
n

[
−2m∗

3
∂ 〈q̄σq〉F

∂F

(
Θ̄+g

〈q̄Gσq〉
2〈q̄q〉 ∑

dG
q

mq

)
(3.2a)

+
〈q̄q〉

3
(
4dγ

d−dγ
u
)
+g
〈q̄Gσq〉
6〈q̄q〉

(
4dG

d
∂ 〈d̄σd〉F

∂F
−dG

u
∂ 〈ūσu〉F

∂F

)]
(3.2b)

≈
(

4
3

dγ

d−
1
3

dγ
u

)
− 2e〈q̄q〉

Mn f 2
π

(
2
3

dG
d +

1
3

dG
u

)
, (3.2c)

where Mn is the nucleon mass, m∗ is the reduced light quark mass, fπ is the pion decay constant,
〈q̄q〉 and 〈q̄Gσq〉 represent the quark condensate and the mixed quark-gluon condensate, respec-
tively, and 〈d̄σd〉F , 〈ūσu〉F and 〈q̄σq〉F represent the up, down and average tensor light quark con-
densates induced by an external uniform electromagnetic field F [16]. In the simplified expression
one assumes that the term in Eq. (3.2a) vanishes by the PQ mechanism. Numerically, one finds:

dn(Θ̄) ≈ (1±0.5)
|〈q̄q〉|

(225MeV)3 Θ̄(2.5×10−16 e cm) (3.3a)

dn(dγ,G
q ) ≈ −dn

(
Θ̄≈∑

dG
q /mq(MeV)

(3.1×10−17e cm)

|m2
0|

(0.8GeV)2

)
+ (3.3b)
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(1±0.5)
|〈q̄q〉|

(225MeV)3

[
1.1(dG

d +0.5dG
u )e+ 1.4(dγ

d−0.25dγ
u)
]
, (3.3c)

where m2
0 ≡ 〈q̄Gσq〉/〈q̄q〉 and Eq. (3.3b) is a contribution that is cancelled in PQ theory because

of the non-zero Θ̄ at the minimum of the BSM potential [16]. The quark dipole moments are often
of the order of

κq ≡
mq

16π2M2
Λ

= 1.3×10−25e cm
mq

1MeV

(
1TeV
MΛ

)2

, (3.3d)

where MΛ is the scale of new physics.
Rough estimates of the other dimension 6 operators, the Weinberg operator (w/3) fabcGµν ,a

Gρ,b
µ G̃c

ρν and the four-quark operators iCi j(q̄a
i qa

i )(q̄
b
jγ5qb

j), are also similar [16]:

|dn(w)| ≈ (4.4×10−22 e cm)
w(µ)

(1TeV)−2

∣∣∣∣
µ=1GeV

(3.3e)

|dn(C)| ≈ (1.2×10−24 e cm)
Cbd(µ)+Cdb(µ)

(1TeV)−2

∣∣∣∣
µ=mb

. (3.3f)

4. Lattice Methods

In this section we discuss the calculation of the contribution of three CP violating operators—
the topological charge, the electric dipole moment of the quark, and the chromo-electric dipole mo-
ment of the quark—to nEDM. Since nEDM changes the energy of the neutron in an external electric
field, there are two general ways of calculating it—as the energy difference between two spin states
of a neutron in an external electric field, or by relating it to the CP-violating form factor F3:

〈n | JEM
µ | n〉

∣∣
��CP =

F3(q2)

2Mn
n̄qνσ

µν
γ5n dn = lim

q2→0

F3(q2)

2Mn
, (4.1)

where JEM
µ is the electromagnetic current, n̄ and n are appropriate spinors for the neutron, and q is

the momentum transfer in the process. We will only consider the second method here.
In either of these cases, we need to calculate lattice correlation functions in the presence of a

CP violating operator. This is technically difficult because the CP violating operator is complex,
so, in practice one needs to expand the action for small values of the CP-violation parameter.

4.1 Topological Charge

For the Θ-term, the CP violating part of the action is Θ
∫

d4xGµνG̃µν = ΘQ, where Q is the
topological charge. Hence, we need to evaluate

〈n | JEM
µ | n〉

∣∣
��CP = Θ

〈
n
∣∣∣∣(2

3
ūγµu− 1

3
d̄γµd

)
Q
∣∣∣∣n〉

=
Θ

2
〈
n
∣∣q̄γµqQ

∣∣n〉+ Θ

6
〈
n
∣∣q̄γµτ3qQ

∣∣n〉 , (4.2)

where the formulae are written for a mass-degenerate two-flavour theory with a doublet (q) con-
sisting of up (u) and down (d) quark fields and all matrix elements on the rhs are calculated in a CP
conserving background lattices generated with Θ = 0. Since the topological charge is independent
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Figure 2: The lattice matrix elements that are
needed to calculate the contribution of the Θ-
term to nEDM. The circle labeled ‘Q’ represents
that each diagram is to be weighted by the topo-
logical charge of the configuration.

Figure 3: The lattice matrix elements that are
needed to calculate the contribution of the quark
electic dipole moment to nEDM.

of the quark propagators, this reduces to weighted sums of three-point functions in each topological
sector.

To isolate the CP-violating form factor, these matrix elements have to be calculated at non-zero
momentum, and then the limit of zero momentum taken. The two lattice diagrams contributing to
this process are shown in Figure 2.

4.2 Quark Electric Dipole Moment

When the up and down quarks have non-zero electric dipole moments they directly give extra
CP violating contributions to the electromagentic current. As a result, the nEDM is given by

〈n | JEM
µ | n〉

∣∣
��CP =

〈
n
∣∣(dγ

u ūσµνu+dγ

d d̄σµνd
)

qν
∣∣n〉

= qν
dγ

u +dγ

d
2

〈
n
∣∣q̄σµνq

∣∣n〉+qν
dγ

u−dγ

d
2

〈
n
∣∣q̄σµντ3q

∣∣n〉 . (4.3)

Even though Eq. (4.3) suggests that the calculation needs injection of non-zero momentum (qν ) at
the operator, note that the form factor is also multiplied by the same factor in Eq. (4.1). As a result,
this calculation can be performed directly at zero momentum.

The effect of the quark electric dipole moments, therefore, turn out to be related to the iso-
scalar and iso-vector tensor charges of the nucleon that have been studied in other contexts in the
past [17]. The two lattice diagrams are shown in Figure 3.

4.3 Quark Chromoelectric Dipole Moment

The contribution of the Chromoelectric dipole moments are more difficult to evaluate, since
they naïvely need us to evaluate a four point function, the technology for which has not yet been
tested on the lattice. We can, however, evaluate it using the Feynman-Hellmann theorem:

〈n | JEM
µ | n〉

∣∣
��CP =

〈
n
∣∣JEM

µ

(
dG

u ūσνκu+dG
d d̄σνκd

)
G̃νκ

∣∣n〉
=

∂

∂Aµ(E)

∣∣∣∣
E=0

〈
n
∣∣(dG

u ūσνκu+dG
d d̄σνκd

)
G̃νκ

∣∣n〉∣∣E , (4.4)
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where the subscript E refers to matrix elements calculated in the presence of an external electric
field E, and Aµ(E) refers to the corresponding vector potential. Since the background electric field
breaks translational invariance, no momentum needs to be explicitly introduced at the operator.

5. Conclusions

In this article, we have studied the calculation of the nEDM due to the leading operator con-
tributing to CP-violation and arising from beyond the standard model physics. Prior work [18] had
concentrated on the effects and renormalization of the so-called Θ-term. Here, we show that the
effect of the quark electric dipole moment is related to the tensor charge of the neutron, which has
also been previously studied [17]. We also describe the technique for calculating the effect of the
quark chromo-electric moment, and postpone the discussion of the renormalization of this term.
Some of the four-fermion operators recently discussed in the literature [19] are also calculable with
similar effort, but we do not discuss them here.

This work was supported by DOE grant nos. DE-KA-1401020 and DE-AC52-06NA25396.
The lattice calculations described here are being performed in collaboration with Saul D. Cohen,
Anosh Joseph, and Huey-Wen Lin.
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