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Effective Field Theory for Long Strings
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In previous work we used magnetic SU(N) gauge theory with adjoint representation Higgs scalars
to describe the long distance quark-antiquark interaction in pure Yang-Mills theory, and later
to obtain an effective string theory. The empirically determined parameters of the non-Abelian
effective theory yielded ZN flux tubes resembling those of the Abelian Higgs model with Landau-
Ginzburg parameter equal to 1/

√
2, corresponding to a superconductor on the border between

type I and type II. However, the physical significance of the differences between the Abelian and
the ZN vortices was not elucidated and no principle was found to fix the value of the ’Landau-
Ginzburg parameter’ κ of the non-Abelian theory determining the structure of the ZN vortices.
Here we reexamine this point of view. We propose a consistency condition on ZN vortices un-
derlying a confining string. This fixes the value of κ . The transverse distribution of pressure
p(r) in the resulting ZN flux tubes provides a physical picture of these vortices which differs es-
sentially from that of the vortices of the Abelian Higgs model. We speculate that this general
picture is valid independent of the details of the effective magnetic gauge theory from which it
was obtained. Long wavelength fluctuations of the axis of the ZN vortices lead from an effective
field theory to an effective string theory with the Nambu-Goto action. This effective string theory
depends on a single parameter, the string tension σ . In contrast, the effective field theory has a
second parameter, the intrinsic width 1/M of the flux tube, and is applicable at intermediate dis-
tances in a range between 0.2 f m and 1 f m, where the contribution of the intrinsic width increases
the flux tube width over that predicted by effective string theory.
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Effective Field Theory for Long Strings

1. Introduction

The principal goal of this talk is to reexamine magnetic SU(N) gauge theory which we
have used [1] as an effective field theory of the long distance quark-antiquark interaction,
and to elucidate the properties of the ZN flux tubes found in the theory,

In Sections 2 to 4 we write down the Lagrangian of the effective SU(N) gauge theory.
We obtain a relation, applicable for any configuration of the Higgs fields, between the
string tension σ and the transverse distribution of pressure p(r) in the resulting ZN flux
tubes. In section 5, using this relation, we impose a constraint on p(r),

∫
∞

0 rp(r)dr = 0,
which we speculate is a necessary condition for a flux tube to behave as a string.

In sections 6 and 7 we consider SU(3), where we have found explicit classical Z3 flux
tube solutions, and we compare these solutions to those found in the Abelian Higgs model.
We plot the pressure distributions p(r) in the Z3 flux tube, and describe the physical picture
that emerges. The pressure is positive near the axis and at larger distances it is negative.
It is natural to associate the boundary between the outside and inside of the string with
the point at which the pressure vanishes.

In sections 8 and 9 we show that long wavelength fluctuations of the flux tube axis
lead from an effective field theory to an effective string theory with a single parameter, σ .
The contribution of these fluctuations to the flux tube width [2] fixes the value of the short
distance cutoff 1/Λ of the effective field theory at a value less than the intrinsic width 1/M.
Thus the theory can resolve distance scales on the order of 1/M. Finally, we examine the
impact of string fluctuations on the domain of applicability of the effective field theory.

2. Effective Field Theory

The Lagrangian Le f f couples magnetic SU(N) gauge potentials, Cµ to three adjoint
representation scalar fields φi. The gauge coupling constant is gm .

Le f f (Cµ ,φi) = 2tr(−1
4

GµνGµν +
1
2
(Dµφi)

2)−V (φi), (2.1)

Gµν = ∂µCν −∂νCµ − igm[Cµ ,Cν ], Dµφi = ∂µφi− igm[Cµ , φi]. (2.2)

The components of the field tensor Gµν define color electric and magnetic fields ~E and ~B.

Ek =
1
2

εklmnGlm, Bk = Gk0. (2.3)

The Higgs potential V (φi) is generated from one loop graphs of SU(N) gauge theory:[1]

V (φi) =
µ2N

4 ∑
i

2 2trφ
2
i +

4Nλ

3

(
tr(∑

i j
φ

2
i φ

2
j )+

1
N
(tr(∑

i
φ

2
i ))

2 +
2
N ∑

i j
(trφiφ j)

2

)
, (2.4)

where the parameter µ2 has dimensions of mass squared and λ is dimensionless. The
SU(N) gauge symmetry of Le f f reflects that of the original SU(N) Yang-Mills theory.

In the confining vacuum the magnetic SU(N) /ZN gauge symmetry is completely bro-
ken by a Higgs condensate < φi >= φi0 = φ0Ji, where the three matrices Ji are the gener-
ators of N-dimensional irreducible representation of the three-dimensional rotation group.
The Higgs potential has an absolute minimum at φi = φi0: φ 2

0 =− 9µ2

8(N2−1)λ .
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Effective Field Theory for Long Strings

3. ZN Electric Flux Tubes

At large distances r from the flux tube axis φi and Cµ are a gauge transformation Ω(θ)

of the vacuum φi = φi0, Cµ = 0, which we can choose to be Abelian; Ω(θ) = exp(iθY ).

φi→Ω
−1(θ)φi0Ω(θ), Cµ →

i
gm

Ω
−1(θ)∂µΩ(θ). (3.1)

The requirement that φi be single valued→ exp(i2πY ) is an element of ZN .
As r→ ∞

~C→ 1
gm,r

êθY, exp(igm

∮
~C ·d~l)→ exp(2πi

k
N
), k = 1,2,N−1. (3.2)

Assuming the gauge potential ~C =C(r)êθY everywhere implies that the electric field

~E =−∇×~C(~x)Y =−1
r

d(rC(r))
dr

êz Y. (3.3)

The finiteness of the flux tube energy→ φi = 0 on the flux tube axis.

4. Relation Between String Tension and Stress Tensor in SU(N) Flux Tubes

Using the Abelian ansatz (3.3) and the resulting classical static equation

∇×~E =−~j = igm[φi, ~Dφi] (4.1)

to evaluate Le f f gives the following general relation between the string tension σ , the
stress tensor component Tθθ , and ~E(r = 0), the color electric field on the axis of the flux
tube: ∫

∞

0
2πr

Tθθ (r)
r2 dr = −2 tr(

2π

gm
Y ê ·~E(r = 0))−σ . (4.2)

valid for any configuration of the Higgs fields φi. The quantity −2 tr(2π

gm
Y êz ·~E(r = 0))R =W ,

the work necessary to separate a qq̄ pair lying on the z-axis by a distance R.
If Tθθ > 0 the gauge repulsion exceeds the Higgs attraction produced by the circulating

magnetic currents generated by the Higgs condensate, and (4.2) implies that W > σ R.
That is, when there is net repulsion, the work W needed to separate the qq̄ pair a distance
R in the fixed final vortex field ~E(r = 0) is greater than σR, which itself is equal to the work
done in a field ~E that is being built up as the qq̄ pair is separated.

If there is compensation between the net attractive and repulsive contributions to the
pressure p(r) = Tθθ/r2 averaged over the width of the flux tube; that is, if∫

∞

0
2πr

Tθθ

r2 dr =
∫

∞

0
2πrp(r)dr = 0, (4.3)

then the string tension σ =W/R, determined by the field ~E(r = 0) on the flux tube axis.
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Effective Field Theory for Long Strings

5. Speculation on Effective Field Theories Describing Long Strings

Consider now a flux tube connecting a qq̄ pair located at z = ±R/2 having energy
V0(R), the heavy quark potential. The force acting on the quarks is determined by the
color field at the positions of the quarks and is equal to dV0/dR. If the long distance
potential V0(R) = σR persists to distances R, then this field is fixed by the string tension σ .

If condition (4.3) is met, the field ~E on the z axis near the midpoint of the flux tube is
also fixed by the value of σ . In this situation, it is consistent to assume the field has the
same value, proportional to σ , at all points on the z axis between the qq̄ pair ; that is, the
flux tube behaves like a string, consistent with the assumption that the long distance qq̄
interaction persists to short distances. This argument fails if condition (4.3) is not satisfied.

We assume that (4.3) must be satisfied for any effective field theory describing the
confining string in SU(N) Yang-Mills theory, and we impose this condition to constrain the
parameters in Le f f .

6. Classical Static SU(3) Flux Tube Solutions

For SU(3) we have found explicit classical static solutions [1] with

Jx = λ7, Jy =−λ5, Jz = λ2, Y =
λ8√

3
, (6.1)

φ1 = φ1(~x)
(λ7− iλ6)

2
+φ

∗
1 (~x)

(λ7 + iλ6)

2
,

φ2 = φ2(~x)
(−λ5− iλ4)

2
+φ

∗
2 (~x)

(−λ5 + iλ4)

2
,

φ3 = φ3(~x)λ2,

~C = C(r)êθY, φ1(~x) = φ(r)exp(−iθ), φ2(~x) = φ(r)exp(iθ), φ3(~x) = φ3(r).

The commutation relations

[Y,λ7− iλ6] = λ7− iλ6, [Y,−λ5− iλ4] =−(−λ5− iλ4), [Y,λ2] = 0 (6.2)

show that the Higgs fields φ1 φ2, φ3 carry Y charge −1, 1, 0 respectively, and that the ansatz
(6.1) is consistent with equation (4.1).

We rescale the fields choosing the flux tube radius 1
M as the scale of length, making

the replacement r→ r/M, C→ MC
gm

, φ → φ0φ , φ3→ φoφ3, with M =
√

6gmφ0. Inserting (6.1)
into the effective Lagrangian (2.1) yields the energy density T00 and the stress tensor
component Tθθ :

T00 =
4
3

M2

g2
m

[
1
2
(
1
r

d(rC)

dr
)2 +

1
2
(C− 1

r
)2

φ
2 +

1
2
(
dφ

dr
)2 +

1
4
(
dφ3

dr
)2 +V (φ ,φ3)

]
, (6.3)

Tθθ

r2 =
4
3

M4

g2
m

[
1
2
(
1
r

d(rC)

dr
)2 +

1
2
(C− 1

r
)2

φ
2− 1

2
(
dφ

dr
)2− 1

4
(
dφ3

dr
)2−V (φ ,φ3)

]
. (6.4)
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Effective Field Theory for Long Strings

where

V (φ ,φ3) = κ
2
(
(φ 2−1)2

4
+9

(φ 2
3 −1)2

100
−7

(φ 2
3 −1)(1−φ 2)

50

)
, κ

2 ≡ 25
9

λ

g2
m
. (6.5)

Separating the gauge contribution and the Higgs contribution to T00 and Tθθ gives

∫
∞

0
2πrT00dr = σ =

4
3

M2

g2
m

σ(κ) =
4
3

M2

g2
m
(σg(κ)+σh(κ)), (6.6)∫

∞

0
2πr

Tθθ

r2 dr =
4
3

M2

g2
m
(σg(κ)−σh(κ)), (6.7)

where

σg(κ)≡
∫

∞

0
2πr dr

(
1
2
(
1
r

d(rC)

dr
)2 +

1
2
(C− 1

r
)2

φ
2
)
, (6.8)

and

σh(κ)≡
∫

∞

0
2πr dr

(
1
2
(
dφ

dr
)2 +

1
4
(
dφ3

dr
)2 +V (φ ,φ3)

)
. (6.9)

7. Results for SU(3) String Tension and Stress Tensor

Figure 1: Tθθ/r vs r. Red, long dashed, κ2 = 0.5; blue, thick, κ2 = 0.6; green, short dashed, κ2 = 0.8.

Note that if φ3(r) has its vacuum value φ3 = 1, V (φ ,φ3) reduces to the Higgs potential
of the Abelian Higgs model with Landau Ginzburg parameter κ. Furthermore, numerical
solution of the classical equations shows that φ < 1 and φ3 > 1 everywhere; hence the term
coupling φ and φ3 in (6.5) is attractive. This additional attraction in V (φ ,φ3) reduces the
energy of the Z3 vortex below that of the Abrikosov-Nielsen-Olesen vortex of the Abelian
Higgs model. The ANO vortex can then be viewed as an unstable configuration of the
non-Abelian theory that subsequently decays to the stationary classical solution φ3(r).

Conditions (4.3) and (6.7) yield σg(κ) = σh(κ), which determines the physical value of
κ; κ2 ∼ 0.6. The string tension σ(κ2 ≈ 0.6) ≈ 3.1, approximately equal to its value in the
Abelian Higgs model at κ2 = 1/2. Figure 1 shows Tθθ/r evaluated at the classical solution

5
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Effective Field Theory for Long Strings

as a function of r for three values of κ2. For κ2 ≈ 0.6, where condition (4.3) is satisfied,
Tθθ = 0 at r ≡ r∗ ∼ 1.7/M; there is repulsion at r ≤ r∗ and attraction at r > r∗. It is natural
to identify r∗ as a boundary, separating the inside of the flux tube from its exterior.

In contrast, in the Abelian Higgs model κ = 1√
2

is a BPS state [3], and condition (4.3)
is satisfied exactly because the components Tθθ and Trr of the stress tensor vanish for all
r [4], and thus the profile of Tθθ (r) does not reveal the boundary of the flux tube.

We speculate that the difference between the properties of the stress tensor inside
(positive net pressure) and outside the flux tube (negative net pressure) is a fundamental
physical property of flux tubes giving rise to a confining string. The difference between
the Abelian and non-Abelian theories is caused by the additional attractive interaction
between the scalar particles, which breaks the supersymmetry [5] giving rise to the BPS
Abelian Higgs vortex, and stabilizes the non- Abelian flux tube. Indeed, as we have seen,
the additional attraction in the Higgs potential of the non-Abelian theory is approximately
balanced at κ2 ≈ 0.6 by the additional repulsion associated with the fact that κ2 > 1/2.

8. From Effective Field Theory to Effective String Theory

The Higgs fields φ vanish on the axis L of the static flux tube. Long wavelength
fluctuations of the axis L of a flux tube connecting a quark-antiquark pair sweep out a
space time surface x̃µ(ζ ) on which φ vanishes. The Wilson loop W (Γ) of Yang-Mills theory
is the path integral over all field configurations for which the Higgs fields vanish on some
surface x̃µ(ζ ) whose boundary is the loop Γ.

W (Γ) =
∫

DCµDφ exp(iS(Cµ ,φ), S(Cµ ,φ) =
∫

dxLe f f (Cµ ,φ). (8.1)

We transform W (Γ) to a path integral over the vortex sheets x̃µ(ζ ) in two stages:

1. We fix the location x̃µ(ζ ) of the vortex and integrate over field configurations Cµ(x), φ(x)
for which φ(x)|x=x̃(ζ ) = 0. The integration (8.1) over these configurations → Se f f (x̃),
the action of the effective string theory.

2. We then integrate over all surfaces x̃µ(ζ ). This integration puts W (Γ) into the form
of a partition function of an effective string theory: [6]

W (Γ) =
∫

D x̃µ . . .exp[iSe f f (x̃µ)]. (8.2)

The path integral (8.2) goes over the two transverse fluctuations of the world sheet x̃µ(ζ ).
The field modes contributing to Se f f [x̃µ ] have masses > M. Fluctuations of wavelength

> 1/M are string fluctuations accounted for by (8.2). We can then replace integrations
(8.1) over field configurations Cµ , φ by the classical configuration minimizing S(Cµ , φ) for
fixed position xµ(ζ ) of the vortex.

exp(iSe f f (x̃µ(ζ )))≈ exp(iSclass(x̃µ(ζ ))).

When condition (4.3) is satisfied, the linear potential persists when a straight flux tube
is shortened. Likewise, bending the flux tube slightly gives a change in energy proportional

6
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Effective Field Theory for Long Strings

to the change ∆R in length: ∆E = σ ∆R. The action of the effective of the effective field
theory becomes the Nambu-Goto action proportional to the area of the vortex sheet.

Se f f (x̃µ) = σ

∫
d2

ξ
√
−g(ξ )≡ SNG(x̃µ). (8.3)

9. Heavy Quark Potentials and Flux Tube Shape

To obtain the heavy quark potential V0(R) and transverse energy profiles between
static quarks separated by distance R we couple the vector potential ~C to a Dirac string,
writing

~E =−∇×~C− 2π

gm
δ (x)δ (y)(θ(z+R/2)−θ(z−R/2))êzY (9.1)

in the Lagrangian Le f f , and solving the resulting static equations [7]. We compared the
results [8] with lattice data for heavy quark potentials [9], and found that gm ≈ 3.91; i. e.,
M≈ 1.9

√
σ . Furthermore, these calculations were consistent with SU(2) lattice simulations

[10] for transverse energy profiles for a range of interquark spacings 0.25/
√

σ ≤R< 2/
√

σ .
The above calculations did not explicitly include the contribution of string fluctuations.

However, string fluctuations renormalize the intrinsic width and therefore they are to some
extent accounted for in the empirically determined value of M. For distances larger than
∼ 1/

√
σ , string fluctuations become dominant, leading to the logarithmic increase of the

mean square width of the flux tube at its midpoint [11];

w2(R/2) =
d−2
2πσ

log
R
r0
. (9.2)

Recent lattice simulations of (2 + 1)d SU(2) Yang-Mills theory [2] extending to dis-
tances R = 36/

√
σ gave excellent agreement with the predictions of effective string the-

ory for distances R > 1.5/
√

σ , and determined the value of r0 = 0.364/
√

σ . (Interpreting
1/r0 = Λ as the cutoff of the effective field theory gives Λ≈ 2.75

√
σ ≈ 1.41M.) However, for

distances 1.5/
√

σ > R > 0.2/
√

σ the lattice simulations of w2(R/2) lie above the prediction
(9.2), indicating that the intrinsic width of the flux tube must be taken into account at these
qq̄ separations. It is in this intermediate range, shown schematically in Figure 2, that we
can test the physical picture of the confining string given by the effective field theory.

Figure 2: Schematic showing approximate domains of applicability of Effective Field Theory (EFT) (solid
blue line) and Effective String Theory (EST) (red dashed line).
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Effective Field Theory for Long Strings

With use of analytic regularization [12], string fluctuations do not renormalize the
string tension σ , and hence its physical interpretation as the energy per unit length of the
classical flux tube is preserved. The leading large distance correction to the heavy quark
potential is the Lüscher term −π(d− 2)/24R [13], which can be regarded as a renormal-
ization of the intrinsic width at the intermediate distances shown as the region of overlap
in Figure 2.

10. Summary and Future Work

We have presented a physical picture of the ZN flux tubes giving rise to a confining
string. In this picture net positive pressure in the interior of the ZN vortices balances
net negative pressure outside. (Perhaps at the deconfinement temperature the flux tube
’bursts’! ) We speculate that this general description is valid, independent of the details of
the effective magnetic gauge theory from which it was obtained.

Comparison with lattice simulations at intermediate distances would test our hypothe-
sis that there is an effective field theory underlying the confining string. Since M ∼ 3 times
TC, the SU(3) deconfinement temperature, the theory should be applicable for a range of
temperatures in the deconfined phase, where it was used [14] in a preliminary study of
spatial Wilson loops and where we expect some manifestation of the Higgs field.

Acknowledgment:
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