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to suppress these artifacts by subtracting one-loop contributions proportional to the square of the
lattice spacing calculated in lattice perturbation theory.
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1. Introduction

Renormalization factors in lattice Quantum Chromodynamics (QCD) relate observables com-
puted on finite lattices to their continuum counterparts in specific renormalization schemes. There-
fore, their determination should be as precise as possible in order to allow for a reliable comparison
with experimental results. A widely used method to calculate these factors is the so-called Rome-
Southampton method [1] (utilizing the RI-MOM scheme). Like (almost) all quantities evaluated
in lattice QCD also renormalization factors computed in this non-perturbative scheme suffer from
discretization effects. In this paper we describe a method to suppress these lattice artifacts using a
subtraction procedure based on perturbation theory. It has been published in Ref. [2] and the reader
is referred for all details to this reference.

In a recent paper of the QCDSF/UKQCD collaboration [3] a comprehensive discussion and
comparison of perturbative and nonperturbative renormalization have been given. It was shown that
a subtraction of the complete lattice artifacts in one-loop lattice perturbation theory improves the
results for the Z factors significantly. While being very effective this procedure is rather involved
and not suited as a general method for more complex operators, especially for operators with more
than one covariant derivative, and complicated lattice actions. An alternative approach can be based
on the subtraction of one-loop terms of order a2, with a being the lattice spacing. The computation
of those terms has been developed by the authors of Ref. [4] and applied to various operators for
different actions.

We study the flavor-nonsinglet quark-antiquark operators given in Table 1. The correspond-

Operator (multiplet) Notation Representation Operator basis

ūd OS τ(1)
1 OS

ūγµ d OV
µ τ(4)

1 OV
1 ,O

V
2 ,O

V
3 ,O

V
4

ūγµγ5 d OA
µ τ(4)

4 OA
1 ,O

A
2 ,O

A
3 ,O

A
4

ūσµν d OT
µν τ(6)

1 OT
12,O

T
13,O

T
14,O

T
23,O

T
24,O

T
34

ūγµ
↔
Dν d Oµν → Ov2,a τ(6)

3 O{12},O{13},O{14},O{23},O{24},O{34}

ūγµ
↔
Dν d Oµν → Ov2,b τ(3)

1 1/2(O11 +O22 −O33 −O44),
1/

√
2(O33 −O44),1/

√
2(O11 −O22)

Table 1: Operators and their representations with respect to the hypercubic group as investigated in the
present paper. The symbol {...} means total symmetrization. A detailed group theoretical discussion is
given in [5].

ing renormalization factors have been measured (and chirally extrapolated) at the lattice coupling
β = 6/g2 = 5.20,5.25,5.29 and 5.40 using N f = 2 clover improved Wilson fermions with plaquette
gauge action [3]. The Sommer scale r0 is taken to be r0 = 0.501fm and the relation between the
lattice spacing a and β is given by r0/a= 6.050(β = 5.20),6.603(β = 5.25),7.004(β = 5.29) and
8.285(β = 5.40) [6]. This results in the corresponding values a(β )= (0.42,0.39,0.36,0.31)GeV−1.
All results are computed in Landau gauge. The clover parameter cSW used in the perturbative cal-
culation discussed below is set to its lowest order value cSW = 1.
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2. Renormalization group invariant operators

We define a so-called RGI (renormalization group invariant) operator, which is independent of
scale M and scheme S , by [3]

ORGI = ∆ZS (M)OS (M) = ZRGI(a)Obare (2.1)

with

∆ZS (M) =

(
2β0

gS (M)2

16π2

)−(γ0/2β0)

exp

{∫ gS (M)

0
dg′

(
γS (g′)
βS (g′)

+
γ0

β0g′

)}
(2.2)

and the RGI renormalization constant (depending on the lattice spacing a via the lattice coupling)

ZRGI(a) = ∆ZS (M) ZS
bare(M,a) . (2.3)

Here gS , γS and βS are the coupling constant, the anomalous dimension and the β -function in
scheme S , respectively. Relations (2.1), (2.2) and (2.3) allow us to compute the operator O in
any scheme and at any scale we like, once ZRGI is known. Ideally, ZRGI depends only on the bare
lattice coupling, but not on the momentum p which determines the scale via M2 = p2. Computed
on a lattice, however, it suffers from lattice artifacts, e.g., it contains contributions proportional
to a2 p2, (a2 p2)2 etc. For a precise determination it is essential to have these discretization errors
under control.

As the RI′-MOM scheme is in general not O(4)-covariant even in the continuum limit, it is
not very suitable for computing the anomalous dimensions needed in (2.2). Therefore we use an
intermediate scheme S with known anomalous dimensions and calculate ZRGI as follows:

ZRGI(a) = ∆ZS (M)ZS
RI′−MOM(M)ZRI′−MOM

bare (M,a) . (2.4)

It turns out that a type of momentum subtraction scheme is a good choice for S (for details see
Ref. [3]).

3. Subtraction of order a2 one-loop lattice artifacts

The diagrammatic approach to compute the one-loop a2 terms for the Z factors of local and
one-link operators has been developed in Ref. [4]. The general case of Wilson type improved
fermions is discussed in [7]. We compute a common Z factor for each multiplet given in Table 1.
As examples we give here (up to terms of higher order in the bare coupling g2 and a2)

ZS = 1+
g2CF

16π2

{
−23.3099+3 log(a2S2)

+a2
[

S2

(
1.64089− 239

240
log(a2S2)

)
+

S4

S2

(
1.95104− 101

120
log(a2S2)

)]}
, (3.1)

Zv2,a = 1+
g2CF

16π2

{
6.93831− 8

3
log(a2S2)−

2
9

S4

(S2)2

3
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+a2

[
S2

(
−1.50680+

167
180

log(a2S2)

)

+
S4

S2

(
2.63125− 197

180
log(a2S2)

)
− 71

540
S4

2

(S2)3 −
82

135
S6

(S2)2

]}
, (3.2)

where we have introduced the notations Sn = ∑4
λ=1 pn

λ (pλ being the momentum components) and
CF = 4/3. The Z factors are written generically as

Z = 1+
g2CF

16π2 Z1−loop(p,a)+a2g2Z(a2)
1−loop(p,a) . (3.3)

We emphasize that the numerical coefficients in the above expressions are either exact rationals or
can be computed to a very high precision.

Now we turn to the subtraction procedure applied to the Monte Carlo data ZRI′−MOM
bare (p,a)MC.

The subtraction of order a2 terms is not unique - we have different possibilities. The only restriction
is that in one-loop perturbation theory they should agree. We investigate the following definitions
(choices (s) and (m)) of subtracted renormalization constants,

ZRI′−MOM
bare (p,a)MC,sub,s = ZRI′−MOM

bare (p,a)MC −a2 g2
? Z(a2)

1−loop(p,a) , (3.4)

ZRI′−MOM
bare (p,a)MC,sub,m = ZRI′−MOM

bare (p,a)MC ×
(

1−a2 g2
? Z(a2)

1−loop(p,a)
)
, (3.5)

where g2
? can be chosen to be either g2 or the boosted coupling g2

B = g2/P(g) = g2 +O(g4), P(g)
being the measured plaquette at β = 6/g2. The effect of the different subtractions is shown in
Fig. 1. The complete one-loop subtraction leads to almost flat ZRGI, whereas the Z factors obtained
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Figure 1: Unsubtracted and subtracted renormalization constants for the scalar operator OS (left) and the
one-link operator Ov2,a (right) at β = 5.40, for p2 & 10GeV2 and r0 ΛMS = 0.700. The a2 subtractions are
of type (s) and (m) with g? = gB.

from the one-loop a2 subtractions show a significant dependence on p2 which has to be taken into
account in the calculation.

We expect that ZRI′−MOM
bare (p,a)MC,sub contains terms proportional to a2n (n ≥ 2) even at order

g2, as well as the lattice artifacts from higher orders in perturbation theory, constrained only by
hypercubic symmetry. Therefore, we parametrize the subtracted data for each β in terms of the
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hypercubic invariants Sn as follows

ZS
RI′−MOM(p)ZRI′−MOM

bare (p,a)MC,sub =
ZRGI(a)

∆ZS (p) [1+b1 (gS )8]
+ (3.6)

a2
(

c1 S2 + c2
S4

S2
+ c3

S6

(S2)2

)
+a4 (c4 (S2)

2 + c5 S4
)
+a6 (c6 (S2)

3 + c7 S4 S2 + c8 S6
)
.

The parameter b1 is introduced to compensate for the truncation errors in the expressions from
continuum perturbation theory. There are also further non-polynomial invariants at order a4,a6,
but their behavior is expected to be well described by the invariants which have been included
already.

Together with the target parameter ZRGI(a) we have ten parameters for this general case. In
view of the limited number of data points for each single β value (5.20, 5.25, 5.29, 5.40) we
apply the ansatz (3.6) at several β values simultaneously, assuming β -independent fit parameters
b1 and ci. The renormalization factors are influenced by the choice for r0 ΛMS. This quantity
enters ∆ZS (M) in (2.2) via the corresponding coupling gS (M) (for details see [3]). We choose
r0 ΛMS = 0.700 [8] and 0.789 [9] in order to test the influence of r0 ΛMS.

The fit procedure as sketched above has quite a few degrees of freedom and it is essential
to investigate their influence carefully. A criterion for the choice of the minimal value of p2 is
provided by the breakdown of perturbation theory at small momenta. The data suggest [3] that we
are on the ’safe side’ when choosing p2

min = 10GeV2. As the upper end of the fit interval we take
the maximal available momentum at given coupling β .

Other important factors are
• Type of subtraction: As discussed above, the procedure of the one-loop subtraction is not

unique. We consider the two choices (s) and (m) with either bare g or boosted coupling gB.

• Selection of hypercubic invariants: For the quality of the fit it is essential to have an ap-
propriate description of the lattice artifacts which remain after subtraction. This is connected
to the question whether the a2 subtraction has been sufficient to subtract (almost) all a2 ar-
tifacts. Therefore, we perform fits with various combinations of structures in (3.6). One
should mention that the concrete optimal (i.e. minimal) set of ci depends strongly on the
momenta of the available Monte Carlo data - momenta close to the diagonal in the Brillouin
zone require fewer structures to be fitted than far off-diagonal ones.

As discussed in detail in [2] we are not able to find one combination of the investigated sub-
traction types and parameter sets {ci} which is superior to all others. This is partly due to the fact
that the available data set is almost diagonal in the momentum components. Therefore, we rely on
our experience, which suggests, e.g., the use of the boosted coupling gB in the subtraction prode-
cure. One further important consideration is the comparison with the results based on the complete
one-loop subtraction which serve as benchmarks. In the end, we favor the simple subtraction (s)
with boosted coupling gB using all parameters ci in the ansatz (3.6).

In Fig. 2 we show as examples the corresponding results for the operators OS and Ov2,a com-
pared to the results obtained by the complete one-loop subtraction.

The final renormalization factors are collected in Table 2 using the two different r0 ΛMS values

5
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Figure 2: ZRGI
S (left) and ZRGI

v2,a
(right) at r0 ΛMS = 0.700 as a function of β using all ci compared to the

complete one-loop subtraction.

Op. r0 ΛMS ZRGI|β=5.20 ZRGI|β=5.25 ZRGI|β=5.29 ZRGI|β=5.40

OS 0.700 0.4530(34) 0.4475(33) 0.4451(32) 0.4414(30)

0.789 0.4717(44) 0.4661(65) 0.4632(54) 0.4585(27)

OV 0.700 0.7163(26) 0.7253(26) 0.7308(25) 0.7451(24)

0.789 0.7238(72) 0.7319(94) 0.7365(99) 0.7519(50)

OA 0.700 0.7460(41) 0.7543(40) 0.7590(39) 0.7731(37)

0.789 0.7585(46) 0.7634(77) 0.7666(81) 0.7805(30)

OT 0.700 0.8906(43) 0.9036(42) 0.9108(41) 0.9319(39)

0.789 0.8946(85) 0.9041(111) 0.9075(120) 0.9316(49)

Ov2,a 0.700 1.4914(55) 1.5131(55) 1.5266(54) 1.5660(53)

0.789 1.4635(108) 1.4776(112) 1.4926(90) 1.5397(58)

Ov2,b 0.700 1.5061(37) 1.5218(37) 1.5329(36) 1.5534(35)

0.789 1.4601(151) 1.4727(206) 1.4863(165) 1.5115(140)

Table 2: ZRGI values using the subtraction (s) with gB. The errors are obtained from the nonlinear fit
procedure.

0.700 and 0.789. This shows the influence of the choice of r0 ΛMS (depending on the anomalous
dimension of the operator). For the investigated operators and β values we find for the relative
differences of the ZRGI

δZRGI =

∣∣∣∣∣ZRGI
r0 ΛMS=0.700 −ZRGI

r0 ΛMS=0.789

ZRGI
r0 ΛMS=0.700

∣∣∣∣∣. 0.04 . (3.7)

The Z factors of the local (one-link) operators differ with 1% (2%) from the corresponding results
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obtained via the complete one-loop subtraction.
From the present investigation we conclude: The alternatively proposed ’reduced’ subtraction

algorithm can be used for the determination of the renormalization factors if the complete subtrac-
tion method is not available. Possible applications could be Z factors for N f = 2+ 1 calculations
with more complicated fermionic and gauge actions where one-loop results to order a2 are available
(for the fermionic SLiNC action with improved Symanzik gauge action see Ref. [10]).
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