

Observation and measurements of the production of prompt and non-prompt J/ψ mesons in association with a Z boson in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

Stefanos Leontsinis* on behalf of the ATLAS Collaboration

National Technical University of Athens, Brookhaven National Laboratory E-mail: stefanos.leontsinis@cern.ch

A key observable for understanding the quarkonium production mechanism is the associated production of a vector boson with heavy quarkonia. ATLAS Collaboration at LHC observed the associated production of prompt and non-prompt J/ψ mesons with Z boson with 5σ and 9σ signifance, respectively. In this poster the measurement of the production rate of $Z+J/\psi$ over inclusive Z is discussed. Additionally, contributions from single and double parton interactions are evaluated and the results are compared to latest theoretical calculations in the colour singlet and colour octet formalisms. Finally, a lower limit of the double parton scattering effective cross section is extracted.

XXVII International Symposium on Lepton Photon Interactions at High Energies 17-22 August 2015 Ljubljana, Slovenia

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

^{*}Speaker.

1. Introduction

A process that ignited the interest of both the theoretical [1-3] and experimental communities is the associated production of vector boson (\mathscr{V}) with heavy quarkonia (\mathscr{Q}). Such processes are particularly interesting, enabling the study of the contributions from colour-singlet (CS) and colour-octet (CO) models [4], the heavy flavour production (non-prompt \mathscr{Q} originating from a *b*-hadron) in association with a \mathscr{V} and finally, the multi-parton interactions in hadronic collisions (since the two final state particles can be produced either from a single parton interaction, SPS, or from the interaction of two different pairs of partons, DPS).

The ATLAS Collaboration contributed in the study of the $\mathcal{V} + \mathcal{Q}$ processes, observing the production of prompt $J/\psi(\rightarrow \mu\mu)$ mesons in association with $W(\rightarrow \mu\nu)$ bosons [5], using 4.5 fb⁻¹ of $\sqrt{s} = 7$ TeV pp collisions at the LHC and the associated production of prompt and non-prompt $J/\psi(\rightarrow \mu\mu)$ mesons with $Z(\rightarrow \ell\ell)$ bosons ($\ell = \mu, e$) [6]. The latter analysis used 20.3 fb⁻¹ of $\sqrt{s} = 8$ TeV pp collisions and is the process discussed here.

2. Event selection and reconstruction

The ATLAS detector [7] is a general purpose detector with cylindrical geometry¹ and forwardbackward symmetric coverage in pseudorapidity (η). The detector consists of inner tracking detectors (ID), calorimeters, the muon spectrometer (MS) and has a three-level trigger system. The ID directly surrounds the beam pipe and is immersed in a 2T axial magnetic field generated by a superconducting solenoid.

Both Z and J/ψ particles are reconstructed in their di-lepton decay mode $(Z \to \ell \ell, \ell = \mu, e$ and $J/\psi \to \mu \mu$). Events with two opposite-charged lepton pairs are selected, with at least one lepton having $p_{\rm T} > 24$ GeV. Each lepton pair is then fitted in a common vertex, and only events where the invariant mass of the first pair is between 2.6 - 3.6 GeV (J/ψ) and the second between 81.2 - 101.2 GeV (Z) are selected for the analysis. Additional requirements of the J/ψ candidate are $p_{\rm T}^{J/\psi} > 8.5$ GeV and rapidity² $|y_{J/\psi}| < 2.1$. In order to reduce contamination from pileup (Z and J/ψ produced from two independent inelastic collisions), the Z and J/ψ vertices are required to be closer than 10 mm in the *z*-direction.

Selection requirements to muons from Z boson decay are $p_T > 15 \text{ GeV}$ and $|\eta| < 2.5$ and electrons are required to have $p_T > 15 \text{ GeV}$, $|\eta| < 2.47$ and must satisfy isolation requirements based on tracking information (scalar sum of p_T inside an $\eta - \phi$ cone of size $\Delta R = 0.2$ around the lepton to be less than 15% of the lepton p_T). One of the leptons originating from the Z boson must be matched with the lepton that fired the trigger and must have $p_T > 25 \text{ GeV}$ and $|\eta| < 2.4$. For the J/ψ muons, at least one of them must have $p_T > 4 \text{ GeV}$ and an additional requirement of $p_T > 2.5(3.5) \text{ GeV}$ is applied for those with $|\eta| > 1.3(< 1.3)$. A total of 290 events are found (139 with $Z \rightarrow \mu\mu$ and 151 with $Z \rightarrow ee$) after all selections are applied.

Since this analysis measures the $Z + J/\psi$ production ratio over inclusive Z, the same requirements described above, applied to the Z boson, are also applied for the inclusive Z candidate selection. Both MC simulation and data-driven techniques are employed to estimate background contributions in the inclusive Z sample. After background subtraction, which was found to be $0.4 \pm 0.4\%$, the total number of inclusive Z candidates is 16.15 million (8.20 million with $Z \rightarrow \mu\mu$ and 7.95 million $Z \rightarrow ee$).

3. Signal extraction

Possible sources of $Z + J/\psi$ candidates are pileup, fake particles that mimic the Z boson or the J/ψ meson and that the J/ψ may originate either from prompt QCD interactions or by a *b*-hadron decay. This analysis first selects true $Z + J/\psi$ events by distinguishing prompt and non-prompt J/ψ from fake

¹ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the *z*-axis along the beam pipe. The *x*-axis points from the IP to the centre of the LHC ring, and the *y*-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$ and the transverse momentum $p_{\rm T}$ is defined as $p_{\rm T} = p \sin \theta$. The $\eta - \phi$ distance between two particles is defined as $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

²The rapidity is defined as $y = 0.5 \ln ((E + p_z) / (E - p_z))$, where E and p_z refer to energy and longitudinal momentum, respectively.

 J/ψ mesons. This is realised with a two-dimensional unbinned maximum likelihood fit in the J/ψ invariant mass and pseudo-proper time (see figure 1), since non-prompt J/ψ mesons are expected to have longer pseudo-proper times. The shape related parameters of the fit to the $Z+J/\psi$ sample are driven from a high statistics inclusive J/ψ sample, which is fitted simultaneously with the $Z+J/\psi$ sample. This prevents instabilities that may occur from the low statistics of the $Z+J/\psi$ sample.

Figure 1: Projection of the unbinned mass (left) and pseudo-proper time (middle-left) maximum-likelihood fit. $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ mass distributions for Z bosons produced in association with prompt J/ψ mesons (middle-right and right) [6].

A total of 56 ± 10 prompt and 95 ± 12 non-prompt J/ψ mesons are found to be produced in association with a Z boson candidate from the fit procedure. After the fit is performed, the sPlot tool is used, so per-event weights for each of the four yield components of the fit (prompt J/ψ , non-prompt J/ψ , prompt background and non-prompt background) can be extracted. Weights from prompt J/ψ and non-prompt J/ψ yields are further applied to the invariant mass distribution of Z boson candidates (see figure 1). From these distributions, showing the Z boson candidates produced in association with either a prompt or a non-prompt J/ψ meson, the contamination from background sources is evaluated. Signal and multi-jet templates, extracted from the Powheg MC generator and data respectively, are applied and compared with the sPlot weighted distributions. Backgrounds were estimated to be $0 \pm 4(1 \pm 4)$ and $1 \pm 5(0 \pm 5)$ for the $Z \rightarrow ee(\mu\mu)$ candidates, produced in association with prompt and non-prompt J/ψ mesons.

In order to reduce pileup contamination, the Z and J/ψ vertices are required to be closer than 10 mm in the z direction. The number of pileup candidates are estimated according to the formula $N_{\text{pileup}} = N_{\text{extra}}N_Z P_{J/\psi}$, where N_{extra} is the number of additional vertices which lie within 10 mm of a vertex which produced a Z boson, N_Z is the number of inclusive Z candidates in the fiducial region and $P_{J/\psi}$ is the probability for a J/ψ to be produced at a given pileup vertex. Using the formula above, the total number of pileup events were found to be $5.2^{+1.8}_{-1.3}$ and $2.7^{+0.9}_{-0.6}$ for the prompt and non-prompt cases respectively.

The DPS is not considered as a background source and, as it is treated as part to the signal, its contribution is estimated. This estimation is using the assumption that the DPS effective cross-section (σ_{eff}) is process-independent and that the two hard interactions are uncorrelated. Based on that, for a collision where a *Z* boson is produced, the probability that a J/ψ meson will be produced in association with the *Z* is $P_{J/\psi|Z} = \sigma_{J/\psi}/\sigma_{\text{eff}}$. $\sigma_{J/\psi}$ is the cross-section of the J/ψ production and the value of σ_{eff} is taken to be $\sigma_{\text{eff}} = 15 \pm 3(\text{stat.})^{+5}_{-3}(\text{sys.})$ mb, based on the ATLAS measurement [8]. The estimated number of DPS events were found to be $11.1^{+5.7}_{-5.0}$ and $5.8^{+2.8}_{-2.6}$ for prompt and non-prompt J/ψ mesons produced in association with a *Z* boson.

4. Results

ATLAS Collaboration, using 20.3 fb⁻¹ of $\sqrt{s} = 8$ TeV pp data, observed the prompt and nonprompt J/ψ meson production in association with a Z boson with a 5 σ and 9 σ significance respectively. The fiducial cross-section ratio, defined as $R_{Z+J/\psi}^{fid} = \sum_{p_T^{J/\psi} \text{ bins}} [N^{ec}(Z+J/\psi) - N_{pileup}^{ec}]/N(Z)$, where $N^{ec}(Z+J/\psi)$ is the yield of $Z+J/\psi$ events after correcting for J/ψ muon reconstruction efficiency, N(Z) is the background-subtracted yield of inclusive Z events and N_{pileup}^{ec} is the efficiencycorrected expected pileup background contribution in the fiducial J/ψ acceptance, is measured to be $(36.8\pm6.7(\text{stat.})\pm2.5(\text{syst.})) \times 10^{-7}$ for the prompt and $(65.8\pm9.2(\text{stat.})\pm4.2(\text{syst.})) \times 10^{-7}$ for the non-prompt $J/\psi + Z$ production. Assuming unpolarised J/ψ decays and correcting for geometric acceptance losses due to J/ψ muon $p_{\rm T}$ and η requirements, the inclusive cross-section ratio is measured to be $(63 \pm 13(\text{stat.}) \pm 5(\text{syst.}) \pm 10(\text{pol.})) \times 10^{-7}$ and $(102 \pm 15(\text{stat.}) \pm 5(\text{syst.}) \pm 3(\text{pol.})) \times 10^{-7}$ for prompt and non-prompt J/ψ production respectively.

Figure 2: (Left) Production cross-section of J/ψ in association with a Z boson as a function of the prompt J/ψ $p_{\rm T}$, normalised to the inclusive Z cross-section. (Middle) Azimuthal angle between the Z boson and the J/ψ meson after the application of J/ψ signal prompt sPlot weights. (Right) Measurements and limits on $\sigma_{\rm eff}$ as a function of \sqrt{s} (right) (JHEP 03 032 (2014), New J. Phys. 15 (2013) 033038, Phys. Rev. D47 4857-4871 (1993), Phys. Rev. D56 3811-3832 (1997), Phys. Rev. D81 052012 (2010), JHEP 113 1310 (2013)) [6].

The inclusive Z+ prompt or non-prompt J/ψ production over inclusive Z cross-section ratio is also measured as a function of the $p_T^{J/\psi}$, as illustrated in figure 2. Together with the inclusive differential cross-section ratio, the differential DPS contribution is shown. The measurement is compared with NLO CS and CO calculations. The combination of the DPS and NLO CO+CS contributions underestimates the rate observed in data.

5. Double Parton Scattering

A sensitive variable to study DPS is the azimuthal angle between the Z boson and the prompt J/ψ momentum vectors ($\Delta\phi$). The $\Delta\phi$ distribution, after the application of sPlot weights corresponding to the prompt J/ψ signal component, is shown in figure 2 (middle). SPS events are expected to show a back-to-back correlation $\Delta\phi = \pi$, while DPS events are expected to be distributed uniformly along the $\Delta\phi$ variable, because the Z and J/ψ particles are produced from two independent scatters.

Based on the above, the low $\Delta\phi$ region ($\Delta\phi(Z, J/\psi) < \pi/5$), which is dominated by DPS, is used to place a lower limit to the maximum allowed DPS contribution to the observed signal. The lower limit was found to be $\sigma_{\text{eff}} > 5.3 \text{ mb}(3.7 \text{ mb})$ at 68%(95%) confidence level (see figure 2 right).

Acknowledgments The present work was co-funded by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) 2007-2013. ARISTEIA-1893-ATLAS MICROMEGAS.

References

- [1] T. Alexopoulos and S. Leontsinis, Estimates of Z boson and J/ψ production cross sections at the Large Hadron Collider, J. Exp. Theor. Phys. **120**, 808–812 (2015), arXiv:1309.4736 [hep-ph].
- [2] S. Mao, M. Wen-Gan, L. Gang, Z. Ren-You, and G. Lei, QCD corrections to J/ψ plus Z⁰-boson production at the LHC, JHEP 02, 071 (2011), arXiv:1102.0398 [hep-ph]. [Erratum: JHEP12,010(2012)].
- [3] B. Gong, J.-P. Lansberg, C. Lorce, and J. Wang, Next-to-leading-order QCD corrections to the yields and polarisations of J/ψ and Υ directly produced in association with a Z boson at the LHC, JHEP 03, 115 (2013), arXiv:1210.2430 [hep-ph].
- [4] Quarkonium Working Group Collaboration, N. Brambilla et al., Heavy quarkonium physics, arXiv:hep-ph/0412158 [hep-ph].
- [5] ATLAS Collaboration, Measurement of the production cross section of prompt J/ψ mesons in association with a W^{\pm} boson in *pp* collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, JHEP **04**, 172 (2014), arXiv:1401.2831 [hep-ex].
- [6] ATLAS Collaboration, Observation and measurements of the production of prompt and non-prompt J/ψ mesons in association with a Z boson in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, Eur. Phys. J. C75, 229 (2015), arXiv:1412.6428 [hep-ex].
- [7] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3, S08003 (2008).
- [8] ATLAS Collaboration, Measurement of hard double-parton interactions in $W(\rightarrow l\nu)$ + 2 jet events at \sqrt{s} =7 TeV with the ATLAS detector, New J. Phys. 15, 033038 (2013), arXiv:1301.6872 [hep-ex].