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An exploration of nucleon TMD observables at a substantially lower pion mass, 170MeV, than

used in previous lattice TMD calculations is presented. On acorresponding RBC/UKQCD do-

main wall fermion ensemble, TMDs are extracted from nucleonmatrix elements of a bilocal quark

operator containing a staple-shaped gauge link. Appropriate TMD ratios are constructed to cancel

divergences associated with the gauge link. In particular,results associated with the time-reversal

odd Sivers effect and with the quark transversity are reported. They are compared with previous

domain wall fermion calculations at 297MeV pion mass with a view to exploring whether these

observables vary strongly as a function of pion mass in the chiral regime.
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1. Introduction

In the description of hadron structure, transverse momentum-dependent parton distribution
functions [1] (TMDs) play a role complementary to generalized parton distributions (GPDs).
Whereas GPDs encode information about the transverse spatial distribution of partons (through
Fourier transformation with respect to the momentum transfer), TMDs contain information about
the transverse momentum distribution of partons. Cast in a Lorentz frame in which the hadron
of massmh propagates with a large momentum in the 3-direction,P+ ≡ (P0 +P3)/

√
2≫ mh, the

quark momentum components scale such that TMDs are principally functions f (x,kT) of the quark
longitudinal momentum fractionx = k+/P+ and the quark transverse momentum vectorkT , with
the dependence on the componentk− ≡ (k0−k3)/

√
2≪ mh becoming ignorable in this limit. The

function f (x,kT) will thus be regarded as having been integrated overk−.

Experimentally, TMDs manifest themselves in angular asymmetries observed in processes
such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan (DY) process. Corre-
sponding signatures have emerged at COMPASS, HERMES and JLab [2–4], and that has motivated
targeting a significant part of the physics program at futureexperiments in this direction, e.g., at
the upgraded JLab 12 GeV facility and at the proposed electron-ion collider (EIC). Relating the
experimental signature to the hadron structure encoded in TMDs requires a suitable factorization
framework, the one having been advanced in [5–8] being particularly well-suited for connecting
phenomenology to lattice QCD. Factorization in the TMD context is considerably more involved
than standard collinear factorization, with the resultingTMDs in general being process-dependent,
via initial and/or final state interactions between the struck quark and the hadron remnant.

2. Definition of TMD observables

The definition of TMD observables amenable to lattice evaluation has been laid out in detail
in [9]. Summarizing briefly, the starting point is the fundamental correlator

Φ̃[Γ]
unsubtr.(b,P,S, . . .) ≡ 1

2
〈P,S| q̄(0) Γ U [0,ηv,ηv+b,b] q(b) |P,S〉 (2.1)

whereS denotes the spin of the hadron andΓ stands for an arbitraryγ-matrix structure. The
staple-shaped gauge connectionU follows straight-line paths connecting the positions given in
its argument; the unit vectorv thus specifies the direction of the staple, whereasη parametrizes
its length. The presence ofU introduces divergences iñΦ[Γ]

unsubtr.additional to the wave function
renormalizations of the quark operators; these divergences accordingly must ultimately be com-
pensated by additional “soft factors”, which are expected to be multiplicative and do not need to
be specified in detail here, since only appropriate ratios inwhich they then presumably cancel will
ultimately be considered. In order to regularize rapidity divergences, the staple directionv is taken
slightly off the light cone into the space-like region [5, 6], with perturbative evolution equations
governing the approach to the light cone [7]. A useful parameter characterizing how closev is to
the light cone is the Collins-Soper evolution parameterζ̂ = v ·P/(|v| |P|), in terms of which the
light cone is approached for̂ζ → ∞.

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
1
7

Lattice QCD calculations of nucleon TMDs at 170 MeV pion mass M. Engelhardt

The correlator (2.1) can be decomposed in terms of invariantamplitudesÃiB. Listing only the
components relevant for the Sivers effect and the transversity discussed in detail below,

1
2P+

Φ̃[γ+]
unsubtr. = Ã2B + imhεi j biSj Ã12B (2.2)

1
2P+

Φ̃[iσ i+γ5]
unsubtr. = imhεi j b j Ã4B−SiÃ9B− imhΛbiÃ10B +mh[(b·P)Λ−mh(bT ·ST)]biÃ11B , (2.3)

whereΛ denotes the hadron helicity (i.e.,S+ = ΛP+/mh, S− = −Λmh/2P+). These amplitudes
are useful in that they can be evaluated in any desired Lorentz frame, including a frame that is
particularly suited for the lattice calculation. Specializing to TMDs integrated over momentum
fractionx, by considering specificallyb·P = 0, they serve to define the “generalized Sivers shift”

〈ky〉TU(b2
T , . . .) = −mh Ã12B(−b2

T , . . .)/Ã2B(−b2
T , . . .) = mh f̃⊥[1](1)

1T (b2
T , . . .)/ f̃ [1](0)

1 (b2
T , . . .) (2.4)

where the right-hand expression introduces the notation interms of Fourier-transformed TMD mo-
ments, for details, cf. [9]. In thebT → 0 limit, (2.4) formally represents the average transverse
momentumky of unpolarized (“U ”) quarks orthogonal to the transverse (“T”) spin of the hadron,
normalized to the corresponding number of valence quarks. Similarly, one can introduce a general-
ized tensor charge via the ratio of Fourier-transformed moments of the transversity and unpolarized
TMDs,

h̃[1](0)
1 (b2

T , . . .)/ f̃ [1](0)
1 (b2

T , . . .) = −[Ã9B(−b2
T , . . .)−m2

hb
2Ã11B(−b2

T , . . .)/2]/Ã2B(−b2
T , . . .) . (2.5)

In the bT → 0 limit, this formally reduces to the tensor charge, normalized to the corresponding
number of valence quarks. The ratios (2.4) and (2.5) are designed to cancel both multiplicative soft
factors associated with the gauge connectionU as well as wave function renormalizations attached
to the quark operators in (2.1) at finite physical separationb.

3. Lattice evaluation and results

To access observables such as (2.4) and (2.5) within latticeQCD, one calculates hadron matrix
elements of the type (2.1) and then decomposes them into invariant amplitudes, as given in (2.2)
and (2.3). For this to be possible, it is crucial to work in a scheme where the four-vectorsb and
v are generically space-like, for the following reason: By employing a Euclidean time coordinate
to project out hadron ground states via Euclidean time evolution, lattice QCD cannot straightfor-
wardly accomodate operators containing Minkowski time separations. The operator of which one
takes matrix elements thus has to be defined at a single time. Only if both b andv are space-like is
there no obstacle to boosting the problem to a Lorentz frame in whichb andv are purely spatial,
and evaluating̃Φ[Γ]

unsubtr.in that frame. The results extracted for the invariant amplitudesÃiB are then
immediately valid also in the original frame in which (2.1) was initially defined, thus completing
the determination of quantities of the type (2.4) and (2.5).

Since, in a numerical lattice calculation, the staple extent η necessarily remains finite, two
extrapolations must be performed from the generated data, namely, the one to infinite staple length,
η → ∞, and the extrapolation of the staple direction towards the light cone,ζ̂ → ∞. Whereas the
former extrapolation is under control for a range of parameters used in this work, the latter presents
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Figure 1: Dependence of the generalized Sivers shift on the staple extent at a fixedbT and ζ̂ , in domain
wall fermion calculations atmπ = 170MeV (left) andmπ = 297MeV (right) [11]. Note that the two panels
available for this comparison match fairly well inbT , but differ somewhat in̂ζ ; however, as evidenced by
Fig. 3 (right) below, the generalized Sivers shift atmπ = 297MeV does not vary significantly in thêζ range
in question.
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Figure 2: Generalized Sivers shift as a function ofbT in theη → ∞ SIDIS limit, at a fixedζ̂ , in domain wall
fermion calculations atmπ = 170MeV (left) andmπ = 297MeV (right) [11].

a challenge, owing to the limited set of hadron momentaPaccessible with sufficient statistical accu-
racy. This issue has been investigated in detail in [10]. Thepresent study focuses instead on another
aspect, namely, whether TMD ratios of the type (2.4) and (2.5) display significant variation with
the pion mass in the chiral regime. Figs. 1-6 present new datafor the isovector1 generalized Sivers
shift (2.4) and generalized tensor charge (2.5) in the nucleon, obtained using an RBC/UKQCD
2+1-flavor domain wall fermion ensemble with a lattice spacing ofa = 0.144fm, corresponding to
a pion mass ofmπ = 170MeV. They are juxtaposed in Figs. 1-6 with correspondingdata previ-
ously obtained [11] using an RBC/UKQCD 2+1-flavor domain wall fermion ensemble with a lattice
spacing ofa = 0.084fm, corresponding to a pion mass ofmπ = 297MeV. Themπ = 170MeV cal-
culation employed 8 source-sink pairs on each of 310 lattices, i.e., 2480 samples, for each matrix
element; themπ = 297MeV calculation 8 source-sink pairs on 533 lattices, i.e., 4264 samples.

Fig. 1 displays the dependence of the generalized Sivers shift (2.4) on the staple extent for a
given quark separationbT and a given staple direction characterized byζ̂ . The T-odd behavior of

1In the isovector,u−d quark combination, diagrams with operator insertions in disconnected quark loops, which
have not been evaluated, cancel.
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Figure 3: Generalized Sivers shift as a function ofζ̂ in theη → ∞ SIDIS limit, at a fixedbT , in domain wall
fermion calculations atmπ = 170MeV (left) andmπ = 297MeV (right) [11].
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Figure 4: Dependence of the generalized tensor charge on the staple extent at a fixedbT andζ̂ , in domain
wall fermion calculations atmπ = 170MeV (left) andmπ = 297MeV (right) [11]. Note that, as in Fig. 1, the
juxtaposition employs somewhat differinĝζ values; however, the variation of the generalized tensor charge
with ζ̂ in the range in question is not significant, cf. Fig. 6.

this observable is evident, withη → ∞ corresponding to the SIDIS limit, andη →−∞ yielding the
DY limit. The data level off to approach identifiable plateaux as the staple length grows, with the
lighter pion mass data being affected by considerably stronger statistical fluctuations. The limiting
SIDIS and DY values, represented by the open symbols, are extracted by imposing antisymmetry in
η , allowing one to appropriately average theη →±∞ plateau values. Fig. 2 summarizes the results
in the SIDIS limit for differentbT at a givenζ̂ , where the shaded area below|bT | = 2a indicates
the region where the results may be significantly affected byfinite lattice cutoff effects. The strong
statistical fluctuations in themπ = 170MeV ensemble manifest themselves in what appears to be
an outlier at|bT | = 0.29fm; only a tenuous signal is obtained for the generalized Sivers shift in
the region|bT | > 2a. Fig. 3 in turn summarizes the dependence of the generalizedSivers shift on
the Collins-Soper evolution parameterζ̂ , with |bT | kept fixed. The same outlier as seen in Fig. 2
(left) is again present, at̂ζ = 0.27. Only a very limited range of̂ζ was accessible, corresponding
to the limited set of nucleon momentaP available; no clear largêζ trend can be identified from
the data obtained within the present study. Note, however, that a dedicated calculation can indeed
provide information about the largêζ limit in favorable circumstances [10]. Figs. 2 and 3 suggest
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Figure 5: Generalized tensor charge as a function ofbT in theη → ∞ SIDIS limit, at a fixedζ̂ , in domain
wall fermion calculations atmπ = 170MeV (left) andmπ = 297MeV (right) [11].
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Figure 6: Generalized tensor charge as a function ofζ̂ in theη → ∞ SIDIS limit, at a fixedbT , in domain
wall fermion calculations atmπ = 170MeV (left) andmπ = 297MeV (right) [11].

that, within the large uncertainties affecting themπ = 170MeV calculation, the data at the two pion
masses are compatible. However, more accurate calculations at low pion masses will be necessary
to draw substantive conclusions about themπ-dependence of the generalized Sivers shift.

A somewhat more stable picture regarding statistical fluctuations is afforded by the generalized
tensor charge (2.5). Fig. 4 shows its dependence on the staple extent for a given quark separation
bT and a given staple direction characterized byζ̂ . This is a T-even quantity, with the SIDIS
and DY limits coinciding; the asymptotic values represented by the open symbols are obtained by
averaging both limits. Fig. 5 summarizes the SIDIS limit data for given ζ̂ as a function ofbT ,
similar to Fig. 2. A somewhat more stable numerical behavioris observed; again, no significant
difference between the results atmπ = 170MeV andmπ = 297MeV is seen, keeping in mind the
sizeable uncertainties of the data at the lighter pion mass.Fig. 6, which conversely displays the
dependence of the generalized tensor charge on the Collins-Soper evolution parameterζ̂ , with |bT |
kept fixed, likewise exhibits no significant variation of that observable withmπ .

4. Summary

Within a continuing exploration of TMD calculations using lattice QCD, the principal focus
of the present work is whether TMD ratios of the type (2.4) and(2.5) display significant variation
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with the pion mass in the chiral regime. To this end, new data for these observables obtained at
the pion massmπ = 170MeV were compared with data previously extracted [11] from calcula-
tions atmπ = 297MeV. The results of the calculation atmπ = 170MeV display strong statistical
fluctuations. For the generalized Sivers shift (2.4), only tenuous signals, with prominent outliers,
were obtained once the transverse quark separation|bT | became appreciable. The generalized ten-
sor charge (2.5) proved to be somewhat more numerically stable, but is still subject to substantial
statistical uncertainties. Keeping in mind these large statistical fluctuations, the juxtaposition of
themπ = 170MeV andmπ = 297MeV data suggests that the TMD ratios (2.4) and (2.5) are fairly
stable as a function of pion mass in the chiral regime; no statistically significant variation is seen,
within the large uncertainties. However, it is clearly necessary to obtain more accurate, higher
statistics data at light pion masses to draw any substantiveconclusions about themπ -dependence
of TMD ratios as the physical pion mass is approached.
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