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Twisted reality condition

1. Introduction

Real spectral triples should be understood as a noncommutative generalisation of spin mani-
folds, as proposed by Connes in [2] and demonstrated later in the reconstruction theorem [4]. In
a recent paper [1], motivated by some examples of conformally rescaled noncommutative Dirac
operators as well as examples arising from the quantum deformations we have proposed a new
definition of reality condition, which includes a twist by an automorphism of the algebra1.

In this note we study the applications and consequences of the proposed definition for the finite
spectral triple over the algebra of functions on two points, which is often taken as the simplest toy
model for an almost noncommutative geometry and used to show the principles which are behind
the noncommutative description of the Standard Model as arising from a discrete noncommutative
geometry.

We will discuss systematically the lowest dimensional representations and the space of all
Dirac operators with twisted and untwisted reality condition satisfied, due to the gauge perturba-
tions (fluctuations), chiral gauge perturbations, conformal rescalings, and permutation of the two
points. The formula for the distance between the two points will be presented.

2. Twisted reality

Let us recall the notion of real spectral triples with the twisted first order condition.

Definition 2.1. Let ν ∈ Aut(H) be a selfadjoint invertible operator on a Hilbert space H. Let
A be a complex ∗-algebra of operators on H, which is left invariant by the automorphism ν , i.e.
ν−1aν ∈ A for any a ∈ A. We say that the spectral triple (A,H,D) admits a ν-twisted real structure
if there exists an anti-linear map J : H → H such that J∗J = id, J2 = ε id, and, for all a,b ∈ A,

[a,JbJ−1] = 0, (2.1)

[D,a]Jν−2bν2J−1 = JbJ−1[D,a], (2.2)

DJν = ε ′νJD, (2.3)

νJν = J, (2.4)

where ε ,ε ′ ∈ {+1,−1}.
If (A,H,D) admits a grading operator γ : H → H, γ∗ = γ , γ2 = id, [γ,a] = 0, for all a ∈ A,

γD =−Dγ , and ν2γ = γν2, then the twisted real structure J is also required to satisfy

γJ = ε ′′Jγ, (2.5)

where ε ′′ is another sign.

This is a particular instance of Definition 2.1 in [1]. The signs ε,ε ′,ε ′′ determine the KO-
dimension modulo 8 in the usual way [2] and the operator J is antiunitary. In such a case we

1remaining in the framework of bona fide spectral triples in contrast to twisted spectral triples of the interesting
recent paper [6]
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Twisted reality condition

shall say that a spectral triple admits a ν-twisted real structure, or simply that it is a ν-twisted real
spectral triple.

Often (2.1) is called the order-zero condition, (2.2) is called the twisted order-one condition,
while we shall refer to (2.3) as to the twisted ε ′-condition, and to (2.4) as to the twisted regularity
(with the adjective twisted omitted if ν = id).

Let Ω1
D be a bimodule of one-forms:

Ω1
D :=

{
∑

i
π(ai)[D,π(bi)], ai,bi ∈ A

}
,

where the sum is finite. By a fluctuated Dirac operator Dα we mean

Dα := D+α + ε ′νJαJ−1ν ,

with the requirement that α is selfadjoint. We shall often use the shorthand notation α ′ = νJαJ−1ν .
As shown in [1], (A,H,Dα) with (the same) J is also a ν-twisted real spectral triple. If (A,H,D) is
even with grading γ , then (A,H,Dα) is even with (the same) grading γ . Furthermore

Ω1
Dα = Ω1

D

and the twisted fluctuations with composition form a semigroup. They correspond to "gauge trans-
formations" in physics.

Note that it is also possible to modify the Dirac operator by a chiral gauge perturbation of the
form:

Dγ
A = D+ γA+ ε ′JγAJ−1, (2.6)

where A ∈ Ω1
D is antihermitian.

Another type of transformations are conformal rescalings by a positive element taken origi-
nally [3] from the algebra A, or [5] from JAJ−1. Here we take k ∈ A to be not only positive but also
invertible and such that k−1 is also bounded. Denote kJ := JkJ−1. As shown in [1], given a real
spectral triple (A,H,D,J), for

DkJ = kJDkJ, ν(h) = (k−1kJ)(h),

the datum (A,H,J,DkJ ,ν) is a ν-twisted real spectral triple. If furthermore (A,H,D,J) is even with
grading γ , then (A,H,DkJ ,J,ν) is even with (the same) grading γ , and has the same KO-dimension
as (A,H,D,J). Furthermore, if (A,H,D,J,ν) is a ν-twisted real spectral triple which satisfies the
twisted order-one condition, then, for all k as above such that ν̄(kkJ) = kkJ , (A,H,DkJ ,J,µ) is a
µ-twisted real spectral triple, where

DkJ = kJDkJ, µ(h) = kJνk−1 (h).

The grading γ , if exists, is again unchanged.
We also note that

Ω1
DkJ

= Ω1
D,

3
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and conformal twist by k of gauge fluctuated by A (untwisted) real spectral triple is a gauge fluctu-
ation by B = k−1Ak−1 of conformally twisted by k spectral triple. In particular, with ν as in (3.5),
we have for the corresponding Dirac operators

DkJ +A+ ε ′νJAJ−1ν = (D+B+ ε ′JBJ−1)kJ ,

provided that A = kBk.

Before we proceed with the simplest examples of finite spectral triples let us recall and impor-
tant notion of irreducibility of a (real) spectral triple.

Definition 2.2. A real spectral triple over an algebra A is irreducible if the representation of
algebra generated by γ,a, [D,b], a,b ∈ A is not reducible.

Note that this definition obviously implies irreducibility of all the data (a weaker condition).
In particular, it is easy to find examples of classical spectral triples over manifolds, which are
irreducible with J included but are reducible in the sense of the definition above. In this case H
would correspond to "charge n plus −n" fields while in our case to "charge zero" fields.

In this paper we shall study the simplest (nontrivial) possible example, which is the algebra
of functions over two points. We shall work with its faithful representation on a Hilbert space, or
what is the same with its isomorphic copy of operators. We will be interested whether it admits
an irreducible real spectral triple and discuss the space of all Dirac operators with twisted and
untwisted reality condition satisfied.

3. A spectral triple over two points

The ∗-algebra A2 of complex valued functions over two points is isomorphic to C2 = {(c+,c−)}
with ∗ acting as the complex conjugation. We will use the vector space basis given by the projec-
tion e = e∗ = e2 = (1,0) and 1−e, where 1 is the unity (identity) element. An arbitrary element of
the algebra can be written as

a = c+ e+ c− (1− e).

Before we start with the construction of spectral triples let us recall the following fact:

Lemma 3.1. The only nondegenerate first order differential calculus over A2 is the universal dif-
ferential calculus, with:

d (c1 e+ c2 (1− e)) = c1 de− c2de, (3.1)

with the bimodule of one-forms generated by de.

ede = de(1− e). (3.2)

The involution on the algebra extends to the one forms: de∗ =−de.

As a corollary, for any given D, we have

e[D,a] = [D,a](1− e), ∀a ∈ A. (3.3)

4
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Furthermore a general one-form A ∈ Ω1
D can be parametrized by two complex numbers ϕ1,ϕ2

as follows
A = (ϕ1e+ϕ2(1− e)) [D,e]

The selfadjoint A = A∗ correspond to ϕ2 =−ϕ ∗
1 .

Note also that for a = c+e+ c−(1− e) we have:

[D,a] = (c+− c−)[D,e]. (3.4)

Recalling the expression for the distance between the two points in terms of the spectral data:

dD := supa∈A2{|c+− c−| |∥[D,a]∥ ≤ 1} (3.5)

from (3.4) we thus obtain that

dD =
1

∥[D,e]∥
. (3.6)

We observe that the algebra A2 has only one nontrivial automorphism corresponding to the
permutation of the two points, ν(e) = 1−e, so that ν2 = id. Hence, the twisted order one condition
(2.2) is identical to the usual order one condition. The same holds for the commutation relation
of ν2 with γ . However the ε ′-condition (2.3) and the twisted regularity (2.4) are different in the
untwisted and twisted case, which influences the possible form of the other data.

3.1 The minimal representation (C2)

The lowest possible dimension of a faithful representation of the algebra A2 is 2. The canonical
action (faithful representation) of A2 on C2 is through diagonal matrices in M2(C). Therefore A2

is necessarily its own commutant and although there are several inequivalent possibilities for the
real structure J, for all of them we necessarily have that JaJ∗ is an element of the algebra itself.
Therefore, the order one condition (2.2) in its twisted or untwisted version would contradict the
bimodule relation between algebra elements and one-forms (3.3).

Hence, we reach the following conclusion:

Lemma 3.2. There are no irreducible real spectral triples (twisted or untwisted) with the Hilbert
space H = C2 over the algebra A2 = C2, that give a non-zero differential calculus.

Of course, if we discard the real structure altogether we still have an irreducible spectral triple.

4. The minimal even spectral triples (C3)

The first possibility to have a nontrivial real (even) spectral triple with a faithful representation
of A2, is on C3 with the Z2-grading γ , which we take in the diagonal form

γ =

 1 0 0
0 −1 0
0 0 −1

 .

5
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and the representation of A2:

A2 ∋ a =

 c+ 0 0
0 c+ 0
0 0 c−

 .

The Dirac operator is a priori an arbitrary selfadjoint matrix in M3(C), however, using its anti-
commutation relation with γ we are restricted to the following form:

D =

 0 d2 d1

d∗
2 0 0

d∗
1 0 0

 ,

where d1,d2 ∈ C.

4.1 The distance formula

Before we pass to real structures and the restrictions on D imposed by (2.2) and (2.3) we
compute the one-forms A ∈ Ω1

D associated to D. For that it suffices to compute

[D,e] =

 0 0 −d1

0 0 0
d∗

1 0 0

 , (4.1)

where

e =

 1 0 0
0 1 0
0 0 0

 .

Then it follows that a general one-form A can be parametrized by two complex numbers ϕ1,ϕ2 as
follows

A =

 0 0 −ϕ1d1

0 0 0
ϕ2d∗

1 0 0

 .

The selfadjoint A = A∗ correspond to ϕ2 =−ϕ ∗
1 .

Since the norm of [D,a] is
||[D,a]||= |c+− c−| |d1|,

it follows then that the distance (3.5) between the two points equals

dD =
1

∥[D,e]∥
=

1
|d1|

. (4.2)

4.2 Real structure

It is easy to see that [[D,e],e] ̸= 0 unless d1 = d2 = 0. Thus to have the first order condition
satisfied, J cannot commute with e and we cannot have JA2J ⊂ A2. The only (up to a simple
rescaling) candidate for such J is,

J =

 1 0 0
0 0 1
0 1 0

◦∗.

6
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It satisfies J2 = id and Jγ = γJ. We note that Ja∗J becomes

Ja∗J =

 c+ 0 0
0 c− 0
0 0 c+

 .

Now, concerning the order one condition, it suffices to be checked only for a = b = e. Indeed
a simple computation shows that it is satisfied:

[[D,e],JeJ−1] = 0.

independently of any other requirements.
However, to have a family o real (possibly twisted) spectral triples, we need to investigate

possible twists.

4.3 A family of real, conformally twisted, spectral triples.

Let us begin by finding a family of Dirac operators compatible with J. We have:

DJ =

 0 d1 d3

d∗
3 0 0

d∗
1 0 0

◦∗, JD =

 0 d∗
3 d∗

1
d1 0 0
d3 0 0

◦∗,

so, imposing the commutation relation JD = ε ′DJ (the ε ′-condition), we obtain:

d3 = ε ′d∗
1 .

The self-adjoint one-forms

A = (ϕe−ϕ ∗(1− e)) [D,e] =

 0 0 −ϕd1

0 0 0
−ϕ ∗d∗

1 0 0

 (4.3)

allow to fluctuate the Dirac operator by a real perturbation:

A+ ε ′JAJ−1 =−

 0 ε ′ϕ ∗d∗
1 ϕd1

ε ′ϕd1 0 0
ϕ ∗d∗

1 0 0

 .

Hence starting from the Dirac operator D with parameters d1, by fluctuations (gauge pertur-
bations) we obtain a family of gauge perturbed Dirac operators D+A+ ε ′JAJ−1 parametrized by
(1−ϕ)d1. It follows then from (3.5) and (4.1) that

dD+A+ε ′JAJ−1 =
1

|1−ϕ |
dD.

Concerning the perturbation of the type (2.6) we have the following observation

Remark 4.1. The family of chiral gauge perturbations D+ γA+ε ′JγAJ−1 with A =−A∗ ∈ Ω1
D, is

equal to the family of usual gauge perturbations of D. ⋄

7
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Now we shall consider a family of conformally rescaled Dirac operators. First of all, observe
that there is no difference whether we use the rescaling by an element from the algebra or an
element from the commutant.

Lemma 4.2. Let k = ζ (ρe+(1−ρ)(1− e)) and h = ξ ((1−ρ)e+ρ(1− e)), where ζ ,ξ > 0 and
0 ≤ ρ ≤ 1. Let kJ = JkJ−1. Then the conformal rescalings

DkJ = kJDkJ, Dh = hDh,

of D are identical provided that ζ 2ρ = (ξ )2(1−ρ) and they correspond to the same twist:

ν =

 1 0 0
0 1−ρ

ρ 0
0 0 ρ

1−ρ

 . (4.4)

Proof. The proof is by explicit computation. First:

kJ = ζ

 ρ 0 0
0 (1−ρ) 0
0 0 ρ

 , h = ξ

 (1−ρ) 0 0
0 ρ 0
0 0 (1−ρ)

 ,

out of which it is easy to see that indeed:

DkJ = ζ 2

 0 ρ(1−ρ)ε ′d∗
1 ρ2d1

ρ(1−ρ)ε ′d1 0 0
ρ2d∗

1 0 0

 ,

Dh = (ξ )2

 0 (1−ρ)2ε ′d∗
1 ρ(1−ρ)d1

(1−ρ)2ε ′d1 0 0
ρ(1−ρ)d∗

1 0 0

 .

The formula for the twists follows directly.

As a result we can consider just one type of twists and using a general selfadjoint one-form
(4.3) perform now fluctuations (gauge perturbations) of DkJ by

A+ ε ′νJAJ−1ν =−ζ 2

 0 ε ′ρ(1−ρ)ϕ ∗d∗
1 ρ2ϕd1

ε ′ρ(1−ρ)ϕd1 0 0
ρ2ϕ ∗d∗

1 0 0


which are again parametrized by ϕ ∈ C.

Since the overall factor ζ can be incorporated into a redefined parameter ϕ , by the composition
of fluctuations (gauge perturbations) with conformal rescalings of (untwisted) real nondegenerate
(that is d1 ̸= 0) spectral triple, we obtain generically a 3-dimensional (real) parameter family of
Dirac operators and thus of (twisted) spectral triples.

We remark that similarly to the untwisted case the chiral gauge perturbations are identical with
the usual ones.

8
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Note also that the distance formula is only rescaled by ρζ :

dDkJ
=

1
∥[DkJ ,e]∥

=
1

ρ2ζ 2|d1|
, (4.5)

however, the place where the twist appears is in the respective powers of the Dirac operator:

(DkJ )
2 = ζ 4d1d∗

1

 ρ2((1−ρ)2 +ρ2) 0 0
0 ρ2(1−ρ)2 0
0 0 ρ4

 .

4.4 The permutation twist

In Definition 2.1 we adopted the usual assumption about the twist ν that ν−1π(a)ν is π(ν̄(a)),
where ν̄ is an automorphism of the algebra. In our the case with the chosen representation there
are no such nontrivial maps ν , however we can depart slightly from this assumption if the auto-
morphism ν satisfies ν2 = 1. In that case the relation (2.2) is automatically satisfied. If we take

ν =

 1 0 0
0 0 1
0 1 0

 ,

then also the twisted regularity condition νJν = J is satisfied.

Furthermore, we have:

DJν =

 0 d2 d1

d∗
2 0 0

d∗
1 0 0

◦∗, νJD =

 0 d∗
2 d∗

1
d2 0 0
d1 0 0

◦∗,

so, imposing the twisted ε ′-condition, DJν = ε ′νJD, we obtain:

d∗
2 = ε ′d2, d∗

1 = ε ′d1.

Hence the family of ν-real Dirac operators is parametrized by (d1,d2)∈R (for ε ′ = 1) or (d1,d2)∈
iR (for ε ′ =−1):  0 d2 d1

ε ′d2 0 0
ε ′d1 0 0

 .

One can similarly as before compute the family of gauge fluctuated Dirac operators, which is
parametrized by a complex number ϕ and amounts to the change:

(d1,d2)→ ((1−ϕ −ϕ ∗)d1,d2).

The chiral gauge fluctuations are again exactly the same, so we see that only one parameter of
the Dirac operator is changed via all possible gauge transformations.

The formula for the distance for the fluctuated D is,

dD+A+ε ′νJAJ−1ν =
1

max{|1−ϕ −ϕ ∗||d1|, |d2|}
.

9
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5. The spectral triples on C4

The next possibility of a low-dimensional spectral triple, which is irreducible is with of A2 on
C4 and with the Z2-grading γ such that A2 has an irreducible representation on each eigenspace of
γ:

γ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , A2 ∋ a =


c+ 0 0 0
0 c+ 0 0
0 0 c− 0
0 0 0 c−

 .

The Dirac operator is a priori an arbitrary selfadjoint matrix in M4(C), however, using its anti-
commutation relation with γ we are restricted to the following form:

D =


0 d3 d1 0
d∗

3 0 0 d2

d∗
1 0 0 d4

0 d∗
2 d∗

4 0

 ,

where d1,d2,d3,d4 ∈ C.

5.1 The distance formula

Before we pass to real structures and the restrictions on D imposed by (2.2) and (2.3) we
compute the one-forms A ∈ Ω1

D associated to D. For that it suffices to compute

[D,e] =


0 0 −d1 0
0 0 0 −d2

d∗
1 0 0 0

0 d∗
2 0 0

 , (5.1)

where

e =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

together with 1, forms the basis of A2. Then it follows that a general one-form A can be parametrized
by two complex numbers ϕ1,ϕ2 as follows

A = ϕ1e[D,e]+ϕ2(1− e)[D,e] =


0 0 −ϕ1d1 0
0 0 0 −ϕ1d2

ϕ2d∗
1 0 0 0

0 ϕ2d∗
2 0 0

 .

The selfadjoint A = A∗ correspond to ϕ1 =−ϕ ∗
2 =: ϕ .

We also note that for a = c+e+ c−(1− e):

[D,a] = (c+− c−)[D,e]. (5.2)

10
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The norm of [D,a] is
||[D,a]||= |c+− c−| max{|d1|, |d2|},

It follows then that the distance (3.5) between the two points equals

dD =
1

∥[D,e]∥
=

1
max{|d1|, |d2|}

. (5.3)

5.2 The real structure on C4.

Again, as in the case previous case we look for possible J, antilinear isometries that map the
algebra into the genuine commutant. Then, up to a unitary transform such J takes the form

J =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

◦∗.

It satisfies J2 = id and Jγ = γJ. We note that Ja∗J becomes

Ja∗J =


c+ 0 0 0
0 c− 0 0
0 0 c+ 0
0 0 0 c−

 .

Now, concerning the order one condition, it suffices to be checked only for a = b = e. Indeed
a simple computation shows that it is satisfied:

[[D,e],JeJ−1] = 0.

Next we shall impose the (possibly twisted) commutation relations (2.3) and (2.4) separately
for the untwisted and twisted cases.

5.3 Real spectral triples

We begin with the untwisted case, first

DJ =


0 d1 d3 0
d∗

3 0 0 d2

d∗
1 0 0 d4

0 d∗
4 d∗

2 0

◦∗, JD =


0 d∗

3 d∗
1 0

d1 0 0 d∗
4

d3 0 0 d∗
2

0 d2 d4 0

◦∗,

so, imposing the commutation relation JD = ε ′DJ (the ε ′-condition), we obtain:

d3 = ε ′d∗
1 , d4 = ε ′d∗

2 .

Having now fixed d1 and d2 we can consider the space of all real perturbations of the Dirac
operator by one forms. The associated space of one forms A can be parametrized by two complex
numbers ϕ1,ϕ2, however a selfadjoint one-form has ϕ1 =−ϕ ∗

1 =: ϕ , and we have

11
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A = (ϕe−ϕ ∗(1− e)) [D,e] =−


0 0 ϕd1 0
0 0 0 ϕd2

ϕ ∗d∗
1 0 0 0

0 ϕ ∗d∗
2 0 0


and the real perturbation:

A+ ε ′JAJ−1 =−


0 ε ′ϕ ∗d∗

1 ϕd1 0
ε ′ϕd1 0 0 ϕd2

ϕ ∗d∗
1 0 0 ε ′ϕ ∗d∗

2
0 ϕ ∗d∗

2 ε ′ϕd2 0

 .

Hence starting from the Dirac operator D with parameters (d1,d2), by fluctuations (gauge
perturbations) we obtain a family of gauge perturbed Dirac operators D+A+ε ′JAJ−1 parametrized
by ((1−ϕ)d1,(1−ϕ)d2). It follows then from (5.1) and (5.3) that

dD+A+ε ′JAJ−1 =
1

|1−ϕ |
dD.

The chiral gauge perturbations (2.6) with A =−A∗ ∈ Ω1
D, become

γA+ ε ′JγAJ−1 =−


0 ε ′ϕ ∗d∗

1 ϕd1 0
ε ′ϕd1 0 0 −ϕd2

ϕ ∗d∗
1 0 0 −ε ′ϕ ∗d∗

2
0 −ϕ ∗d∗

2 −ε ′ϕd2 0

 ,

and we see that starting from the Dirac operator D with parameters (d1,d2), the chiral fluctuations
(gauge perturbations) lead to a family parametrized by ((1−ϕ)d1,−(1−ϕ)d2).

We can sum up the results of this subsection as

Lemma 5.1. In the real spectral triple over two points represented on C4 the entire family of Dirac
operators (D ̸= 0) is obtained through gauge fluctuations and chiral gauge fluctuations starting
from a nondegenerate spectral triple (d1 ̸= 0).

5.4 The family of twisted real spectral triples.

Since the reality operator is in fact very similar to the one in the C3 case, we find a simi-
lar property concerning conformal scaling by an element from the algebra and the one from the
commutant.

Lemma 5.2. Let k = ζ (ρe+(1−ρ)(1− e)) and h = ξ ((1−ρ)e+ρ(1− e)), where ζ ,ξ > 0 and
0 ≤ ρ ≤ 1. Let kJ = JkJ−1. Then the conformal rescalings

DkJ = kJDkJ, Dh = hDh,

of D are identical provided that ζ 2ρ = (ξ )2(1−ρ) and they correspond to the same twist:

ν =


1 0 0 0

ρ0 1−ρ
ρ 1 0

0 0 ρ
1−ρ 0

0 0 0 1

 .

12
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We skip the computational proof, and concentrate on the operator DkJ ,

DkJ = ζ 2


0 ρ(1−ρ)ε ′d∗

1 ρ2d1 0
ρ(1−ρ)ε ′d1 0 0 (1−ρ)2d2

ρ2d∗
1 0 0 ρ(1−ρ)d∗

2ε ′

0 (1−ρ)2d∗
2 ρ(1−ρ)ε ′d2 0


We can perform now fluctuations (gauge perturbations) of DkJ by the real gauge fields one-

forms, which are again parametrized by ϕ ∈ C:

A+ ε ′νJAJ−1ν =−ζ 2


0 ε ′ρ(1−ρ)ϕ ∗d∗

1 ρ2ϕd1 0
ε ′ρ(1−ρ)ϕd1 0 0 (1−ρ)2ϕd2

ρ2ϕ ∗d∗
1 0 0 ε ′ρ(1−ρ)ϕ ∗d∗

2
0 (1−ρ)2ϕ ∗d∗

2 ε ′ρ(1−ρ)ϕd2 0

 .

We close this section by giving the norm of [DkJ +A+ ε ′νJAJ−1ν ,a]

||[DkJ +A+ ε ′νJAJ−1ν ,a]||= |c+− c−|ζ 2 |1−ϕ |max{ρ2|d1|,(1−ρ)2|d2|}}, (5.4)

It follows then that the distance between the two points is:

dDkJ+A+ε ′νJAJ−1ν =
1

∥[D,e]∥
=

1
ζ 2|1−ϕ |max{ρ2|d1|,(1−ρ)2|d2|}

. (5.5)

5.5 The permutation twist

We shall employ here the twist automorphism

ν =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

which is involutive ν2 = id and implements the automorphism that permutes (exchanges) c− and
c+ in a ∈ A.

A simple calculation shows that the twisted regularity condition

νJν = J

is satisfied.
We remark that the twist automorphism

ν ′ =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

that is also involutive ν2 = id and implements the automorphism that permutes (exchanges) c− and
c+ in a ∈ A, is not suitable as it does not satisfy the twisted regularity condition.
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Furthermore, we have:

DJν =


0 d3 d1 0
d2 0 0 d∗

3
d4 0 0 d∗

1
0 d∗

2 d∗
4 0

◦∗, νJD =


0 d2 d4 0
d3 0 0 d∗

2
d1 0 0 d∗

4
0 d∗

3 d∗
1 0

◦∗,

so, imposing the twisted ε ′-condition, DJν = ε ′νJD, we obtain:

d3 = ε ′d2, d4 = ε ′d1.

Hence the family of ν-real Dirac operators is:
0 ε ′d2 d1 0

ε ′d∗
2 0 0 d2

d∗
1 0 0 ε ′d1

0 d∗
2 ε ′d∗

1 0

 .

Similarly as in the untwisted case the family of gauge fluctuated Dirac operators is parametrized
by a complex number ϕ and amounts to the change:

(d1,d2)→ ((1−ϕ)d1,(1−ϕ)d2).

The formula for the distance is

dD+A+ε ′νJAJ−1ν =
1

|1−ϕ |max{|d1|, |d2|}
.

5.6 Composition of twists

Finally, since in the case of the A2 algebra we have two different types of twists, the conformal
twists and the permutation twist (in the C4 representation case) there is a natural question, whether
these twists can be composed. However, explicit computations show:

Lemma 5.3. The composition of the conformal twists with the permutation twists does not satisfy
the twisted regularity condition (2.4).

Final remarks

In this note a preparatory material has been presented for the study of more complicated finite
dimensional examples, admitting non trivial twist automorphisms. Our interest is mainly in the
finite spectral triple of the noncommutative version of the standard model, where the first order
condition requires a particular attention. For that the product of (twisted) real spectral triples will
need to be introduced and studied. It will be also interesting to study if the twist can be helpful
with the reality condition satisfied only "up to infinitesimals" for some spectral triples on quantum
groups.

In this note, we have worked out for the simplest nontrivial algebra and lowest dimensional
representations and spectral triples of the two-point space, which often serves as a toy model for
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the finite part of Standard Model algebra (two-sheeted space). We have discussed the issue of the
(usual and twisted) reality, conditions related to the conformal rescaling and to the permutation au-
tomorphism. The gauge perturbations (or "fluctuations") both usual and chiral have been explicitly
computed and the dependence of the families of possible (twisted) Dirac operators have been recast
in terms of the fluctuation parameters.

We have demonstrated that even in the simplest possible example of a spectral triple, the twists
and the twisted reality conditions does indeed appear and need to be taken into account. These
preliminary results aim to demonstrated the richness of the the theory as well as serve as the basis
for future studies motivated by the noncommutative description of the elementary particle models.
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