PoS - Proceedings of Science
Volume 299 - The 7th International Conference on Computer Engineering and Networks (CENet2017) - Session I - Machine Learning
Video Age Estimation with Multiple Stacked CNN Models
Z. Zhang
Full text: pdf
Pre-published on: July 17, 2017
Published on: September 06, 2017
Automatic age classification has become relevant to an increasing amount of applications, particularly after the occurrence of many social platforms and social medias where the video age recognition is important for the improvement of user experience; however, performance of the existing methods on real-world video continuous images is in great shortage, especially when it is compared to the “super-human” improvement of recognition precision reported for the related task of object and face recognition. In this paper, we proposed a new cnn structure by combining several stacked deep-convolutional neural networks (CNN), which consist of an improved alexnet and an improved grouped googlenet. The stacked models can be used to estimate the apparent age of the people from coarse to fine. Experiments showed that a significant improvement in performance can be obtained on the video tasks. W evaluated our method on the recent benchmark for video apparent age estimation and showed it to outperform current state-of-the-art methods.
DOI: https://doi.org/10.22323/1.299.0021
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.