Lattice QCD$_2$ effective action with Bogoliubov transformations
S. Caracciolo and M. Pastore*
Pre-published on:
September 24, 2019
Published on:
September 26, 2019
Abstract
In the Wilson's lattice formulation of QCD, a fermionic Fock space of states can be explicitly built at each time slice using canonical creation and annihilation operators. The partition function $Z$ is then represented as the trace of the transfer matrix, and its usual functional representation as a path integral of $\exp(- S)$ can be recovered in a standard way. However, applying a Bogoliubov transformation on the canonical operators before passing to the functional formalism, we can isolate a vacuum contribution in the resulting action which depends only on the parameters of the transformation and fixes them via a variational principle. Then, inserting in the trace defining $Z$ an operator projecting on the mesons subspace at each time slice and making the physical assumption that the true partition function is well approximate by the projected one, we can also write an effective quadratic action for mesons. We tested the method in the renowned 't Hooft model, namely QCD in two spacetime dimensions for large number of colours, in Coulomb gauge.
DOI: https://doi.org/10.22323/1.336.0056
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.