PoS - Proceedings of Science
Volume 383 - MathemAmplitudes 2019: Intersection Theory & Feynman Integrals (MA2019) - Session 2: Intersection Theory, Integral Relations and Applications to Physics
Module Intersection for the Integration-by-Parts Reduction of Multi-Loop Feynman Integrals
J. Boehm, D. Bendle, W. Decker, A. Georgoudis, F.J. Pfreundt, M. Rahn and Y. Zhang*
Full text: pdf
Published on: February 15, 2022
In this manuscript, which is to appear in the proceedings of the conference “MathemAmplitude 2019” in Padova, Italy, we provide an overview of the module intersection method for the the integration-by-parts (IBP) reduction of multi-loop Feynman integrals. The module intersection method, based on computational algebraic geometry, is a highly efficient way of getting IBP relations without double propagator or with a bound on the highest propagator degree. In this manner, trimmed IBP systems which are much shorter than the traditional ones can be obtained. We apply the modern, Petri net based, workflow management system GPI-Space in combination with the computer algebra system Singular to solve the trimmed IBP system via interpolation and efficient parallelization. We show, in particular, how to use the new plugin feature of GPI-Space to manage a global state of the computation and to efficiently handle mutable data. Moreover, a Mathematica interface to generate IBPs with restricted propagator degree, which is based on module intersection, is presented in this review.
DOI: https://doi.org/10.22323/1.383.0004
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.