PoS - Proceedings of Science
Volume 396 - The 38th International Symposium on Lattice Field Theory (LATTICE2021) - Poster
Latent heat and pressure gap at the first-order deconfining phase transition of SU(3) Yang-Mills theory using the small flow-time expansion method
K. Kanaya*, M. Shirogane, S. Ejiri, R. Iwami, M. Kitazawa, H. Suzuki, Y. Taniguchi and T. Umeda
Full text: pdf
Pre-published on: May 16, 2022
Published on:
Abstract
We study the latent heat and the pressure gap between the hot and cold phases at the first-order transition temperature $T=T_c$ of SU(3) Yang-Mills theory, using the small flow-time expansion (SF$t$X) method based on the gradient flow.
We first examine alternative procedures in the SFtX method --- the order of the continuum and vanishing flow-time extrapolations.
We confirm that the final results adopting the two orders, as well as other alternatives in which the perturbative order of the matching coefficients and the renormalization scale of the flow scheme are varied, are all consistent with each other.
We also confirm $\Delta p$ is consistent with zero, as expected from the dynamical balance of two phases at $T_c$.
For the latent heat in the continuum limit, we find $\Delta \epsilon /T^4 = 1.117(40)$ for the spatial volume $L^3$ corresponding to the aspect ratio $N_s/N_t=T_cL=8$ and $1.349(38)$ for $N_s/N_t=6$.
From hysteresis curves, we show that the entropy density in the hot phase is sensitive to the spatial volume, while that in the confined phase is insensitive.
DOI: https://doi.org/10.22323/1.396.0064
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.