PoS - Proceedings of Science
Volume 396 - The 38th International Symposium on Lattice Field Theory (LATTICE2021) - Oral presentation
HAL QCD potentials with non-zero total momentum and an application to the $I=2$ $\pi\pi$ scattering
S. Aoki* and Y. Akahoshi
Full text: pdf
Pre-published on: May 16, 2022
Published on:
Abstract
We consider the HAL QCD method in the system with non-zero total momentum (laboratory frame).
We derive a relation between the NBS wave function in the laboratory frame and the energy-independent non-local potential (HAL QCD potential), and propose the time-dependent method to extract the potential from correlation functions in the laboratory frame.
We then apply this formulation to the $I=2$ $\pi\pi$ system to calculate the corresponding potential in the laboratory frame, employing
the 2+1 flavor gauge configuration on a $32^3\times 64$ lattice at the lattice spacing $a\simeq 0.091$ fm and $m_\pi \simeq 700$ MeV.
While statistical errors are larger, the effective leading order (LO) potentials and corresponding phase shift agree with those
from the HAL QCD potential in the center of mass (CM) frame.
We also demonstrate the consistency in scattering phase shifts between the HAL QCD method in several frames and the finite volume method.
The HAL QCD method in the laboratory frame enlarges applicabilities of the method to investigate hadron interaction including
mesonic resonances such as $\rho$ and $\sigma$.
DOI: https://doi.org/10.22323/1.396.0546
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.