PoS - Proceedings of Science
Volume 398 - The European Physical Society Conference on High Energy Physics (EPS-HEP2021) - T01: Astroparticle and Gravitational Waves
CALET on the International Space Station: a precise measurement of the iron spectrum
C. Checchia*, F. Stolzi, Y. Akaike  on behalf of the CALET Collaboration
Full text: pdf
Pre-published on: February 10, 2022
Published on: May 12, 2022
The Calorimetric Electron Telescope (CALET) was launched on the International Space Station in 2015 and since then has collected a large sample of cosmic-ray charged particles over a wide energy. Thanks to a couple of layers of segmented plastic scintillators placed on top of the detector, the instrument is able to identify the charge of individual elements from proton to iron (and above).
The imaging tungsten scintillating fiber calorimeter provides accurate particle tracking and the lead tungstate homogeneous calorimeter can measured the energy with a wide dynamic range. One of the CALET scientific objectives is to measure the energy spectra of cosmic rays to shed light on their acceleration and propagation in the Galaxy. By the observation in first five years, a precise measurement of the iron spectrum is now available in the range of kinetic energy per nucleon from 10 GeV/n to 2 TeV/n. The CALET’s result with a description of the analysis and details on systematic uncertainties will be illustrated. Also, a comparison with previous experiments’ results is given.
DOI: https://doi.org/10.22323/1.398.0086
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.