PoS - Proceedings of Science
Volume 430 - The 39th International Symposium on Lattice Field Theory (LATTICE2022) - Algorithms
Sampling QCD field configurations with gauge-equivariant flow models
R. Abbott, M. Albergo, A. Botev, D. Boyda, K. Cranmer, D. Hackett, G. Kanwar, A. Matthews, S. Racaniere, A. Razavi, D. Rezende, F. Romero-Lopez, P. Shanahan* and J. Urban
Full text: Not available
Abstract
Machine learning methods based on normalizing flows have been shown to address important challenges, such as critical slowing-down and topological freezing, in the sampling of gauge field configurations in simple lattice field theories. A critical question is whether this success will translate to studies of QCD. This Proceedings presents a status update on advances in this area. In particular, it is illustrated how recently developed algorithmic components may be combined to construct flow-based sampling algorithms for QCD in four dimensions. The prospects and challenges for future use of this approach in at-scale applications are summarized.
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.