Study of $I = 0$ bottomonium bound states and resonances based on lattice QCD static potentials
P. Bicudo, N. Cardoso, L. Mueller* and M. Wagner
Pre-published on:
November 14, 2022
Published on:
April 06, 2023
Abstract
We investigate $I = 0$ bottomonium bound states and resonances in S, P, D and F waves using lattice QCD static-static-light-light potentials. We consider five coupled channels, one confined quarkonium and four open $B^{(*)}\bar{B}^{(*)}$ and $B^{(*)}_s\bar{B}^{(*)}_s$ meson-meson channels and use the Born-Oppenheimer approximation and the emergent wave method to compute poles of the T matrix. We discuss results for masses and decay widths and compare them to existing experimental results. Moreover, we determine the quarkonium and meson-meson composition of these states to clarify, whether they are ordinary quarkonium or should rather be interpreted as tetraquarks.
DOI: https://doi.org/10.22323/1.430.0265
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.