PoS - Proceedings of Science
Volume 430 - The 39th International Symposium on Lattice Field Theory (LATTICE2022) - Theoretical Developments
Translating topological benefits in very cold lattice simulations
M. Bruno, M. Cè, A. Francis*, M. Hansen, S. Zafeiropoulos and J.R. Green
Full text: pdf
Pre-published on: January 06, 2023
Published on: April 06, 2023
Master-field simulations offer an approach to lattice QCD in which calculations are performed on a small number of large-volume gauge-field configurations. The latter is advantageous for simulations in which the global topological charge is frozen due to a very fine lattice spacing, as the effect of this on observables is suppressed by the spacetime volume. Here we make use of the recently developed Stabilised Wilson Fermions to investigate a variation of this approach in which only the temporal direction ($T$) is taken larger than in traditional calculations. As compared to a hyper-cubic lattice geometry, this has the advantage that finite-$L$ effects can be useful, e.g. for multi-hadron observables, while compared to open boundary conditions, time-translation invariance is not lost.

In this proof-of-concept contribution, we study the idea of using very cold (i.e. long-$T$) lattices to topologically "defrost" observables at fine lattice spacing. We identify the scalar-scalar meson two-point correlation function as a useful probe and present first results from $N_f=3$ ensembles with time extents up to $T=2304$ and a lattice spacing of $a=0.055$ fm.
DOI: https://doi.org/10.22323/1.430.0368
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.