PoS - Proceedings of Science
Volume 444 - 38th International Cosmic Ray Conference (ICRC2023) - Cosmic-Ray Physics (Direct, CRD)
Carbon Flux with DAMPE Using Machine Learning Methods
 Dampe, F. Alemanno, C. Altomare, Q. An, P. Azzarello, F.C.T. Barbato, P. Bernardini, X.J. Bi, I. Cagnoli, M.S. Cai, E. Casilli, E. Catanzani, J. Chang, D.Y. Chen, J.L. Chen, Z.F. Chen, Z.X. Chen, P. Coppin, M.Y. Cui, T.S. Cui, Y.X. Cui, I. De Mitri, F. de Palma, A. Di Giovanni, M. Di Santo, Q. Ding, T.K. Dong, Z.X. Dong, G. Donvito, D. Droz, J.L. Duan, K.K. Duan, R.R. Fan, Y.Z. Fan, F. Fang, K. Fang, C.Q. Feng, L. Feng, M. Fernandez Alonso, J.M. Frieden, P. Fusco, M. Gao, F. Gargano, E. Ghose, K. Gong, Y.Z. Gong, D.Y. Guo, J.H. Guo, S.X. Han, Y.M. Hu, G.S. Huang, X.Y. Huang, Y.Y. Huang, M. Ionica, L.Y. Jiang, W. Jiang, Y.Z. Jiang, J. Kong, A. Kotenko, D. Kyratzis, S.J. Lei, W.L. Li, W.H. Li, X. Li, X.Q. Li, Y.M. Liang, C.M. Liu, H. Liu, J. Liu, S.B. Liu, Y. Liu, F. Loparco, C.N. Luo, M. Ma, P.X. Ma, T. Ma, X.Y. Ma, G. Marsella, M.N. Mazziotta, D. Mo, X.Y. Niu, X. Pan, A. Parenti, W.X. Peng, X.Y. Peng, C. Perrina, E. Putti-Garcia, R. Qiao, J.N. Rao, A. Ruina, Z. Shangguan, W.H. Shen, Z.Q. Shen, Z.T. Shen, L. Silveri, J.X. Song, M. Stolpovskiy*, H. Su, M. Su, H.R. Sun, Z.Y. Sun, A. Surdo, X.J. Teng, A. Tykhonov, J.Z. Wang, L.G. Wang, S. Wang, X.L. Wang, Y.F. Wang, Y. Wang, Y.Z. Wang, D.M. Wei, J.J. Wei, Y.F. Wei, D. Wu, J. Wu, L.B. Wu, S.S. Wu, X. Wu, Z.Q. Xia, E.H. Xu, H.T. Xu, J. Xu, Z.H. Xu, Z.Z. Xu, Z.L. Xu, G.F. Xue, H.B. Yang, P. Yang, Y.Q. Yang, H.J. Yao, Y.H. Yu, G.W. Yuan, Q. Yuan, C. Yue, J.J. Zang, S.X. Zhang, W.Z. Zhang, Y. Zhang, Y.P. Zhang, Y. Zhang, Y.J. Zhang, Y.Q. Zhang, Y.L. Zhang, Z. Zhang, Z.Y. Zhang, C. Zhao, H.Y. Zhao, X.F. Zhao, C.Y. Zhou and Y. Zhuet al. (click to show)
Full text: pdf
Pre-published on: July 25, 2023
Published on:
DAMPE space-borne cosmic ray experiment has been collecting data since December 2015. Many high-impact results on the ion, electron and photon fluxes were obtained. This submission presents the carbon flux analysis with DAMPE using machine learning techniques. The readout electronics would saturate at energy deposits above several TeV in a single BGO bar of the DAMPE calorimeter. The total energy loss per event due to saturation can sometimes reach over a hundred TeV. We present a convolutional neural network model which can accurately recover the energy lost due to saturation and thus significantly increase the dynamic range of DAMPE. Another machine learning model combines the resolution of the hodoscopic BGO calorimeter and the high-resolution tracker of DAMPE to provide the best possible prediction of the direction of the incoming particle. This allows measuring charges at energies up to several hundred TeV. In this work, we present the application of these methods to carbon flux analysis.
DOI: https://doi.org/10.22323/1.444.0168
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.