Chiral transition, eigenmode localisation and Anderson-like models
M. Giordano*,
T. Kovacs and
F. Pittler*: corresponding author
Pre-published on:
January 30, 2017
Published on:
March 24, 2017
Abstract
We discuss chiral symmetry restoration and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We argue that the features of QCD relevant to both phenomena are the presence of order in the Polyakov line configuration, and the correlations that this induces between spatial links across time slices. This ties the fate of chiral symmetry and of localisation of the lowest Dirac eigenmodes to the confining properties of the theory. We then show numerical results obtained in a QCD-inspired Anderson-like toy model, derived by radically simplifying the QCD dynamics while keeping the important features mentioned above. The toy model reproduces all the important qualitative aspects of chiral symmetry breaking and localisation in QCD, thus supporting the central role played by the confinement/deconfinement transition in triggering both phenomena.
DOI: https://doi.org/10.22323/1.256.0051
How to cite
Metadata are provided both in
article format (very
similar to INSPIRE)
as this helps creating very compact bibliographies which
can be beneficial to authors and readers, and in
proceeding format which
is more detailed and complete.