Precise measurements of the $\theta_{13}$ neutrino oscillation parameter by the Daya Bay, RENO and Double Chooz experiments, have opened the path to the determination of the neutrino mass hierarchy. Indeed wheather the $\nu_3$ neutrino mass eigenstate is heavier or lighter than the $\nu_1$ and $\nu_2$ mass eigenstates is one of the remaining undetermined fundamental aspects of the Standard Model in the lepton sector. Mass hierarchy determination would have an impact in the quest of the neutrino nature (Dirac or Majorana mass terms) towards the formulation of a theory of flavour.
The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator neutrino detector under construction in the south of China. Thanks to the large 20~kton active mass and unprecedented energy resolution (3% at 1 MeV) it will allow to determine the neutrino mass hierarchy with good sensitivity and to precisely measure the neutrino mixing parameters, $\theta_{12}$, $\Delta m_{21}^2$ and $\Delta m_{ee}^2$ below the 1% level. Moreover, a large liquid scintillator detector will allow to explore physics beyond mass hirarchy determination and provide fundamental results on many topics in astroparticle physics, like supernova burst and diffuse supernova neutrinos, solar neutrinos, atmospheric neutrinos, geo-neutrinos, nucleon decay, indirect dark matter searches and a number of additional exotic searches. The talk will review the status of the experiment and give highlight on the possible physics reach.