PoS - Proceedings of Science
Volume 314 - The European Physical Society Conference on High Energy Physics (EPS-HEP2017) - Neutrino Phyisics (Parallel Session). Conveners: Francesca Di Lodovico; Enrique Fernandez-Martinez; Livia Ludhova. Scientific Secretary: Chiara Sirignano.
Search for eV Sterile Neutrinos -- The Stereo Experiment
J. Haser*  on behalf of the STEREO Collaboration
Full text: pdf
Pre-published on: October 20, 2017
Published on: March 20, 2018
Abstract
In the recent years, major milestones in neutrino physics were accomplished at nuclear reactors: the smallest neutrino mixing angle $\theta_{13}$ was determined with high precision and the emitted antineutrino spectrum was measured at unprecedented resolution. However, two anomalies, the first one related to the absolute flux and the second one to the spectral shape, have yet to be solved. The flux anomaly is known as the Reactor Antineutrino Anomaly and could be caused by the existence of a light sterile neutrino participating in the neutrino oscillation phenomenon. Introducing a sterile state implies the presence of a fourth mass eigenstate, global fits favour oscillation parameters around $\sin^2({2\theta}) \approx 0.09$ and $\Delta m^2 \approx 1\,\mathrm{eV}^2$.
The Stereo experiment was built to finally solve this puzzle. It is one of the first running experiments built to search for eV sterile neutrinos and takes data since end of 2016 at ILL Grenoble (France). At a short baseline of 10 metres, it measures the antineutrino flux and spectrum emitted by a compact research reactor. The segmentation of the detector in six target cells allows for measurements of the neutrino spectrum at multiple baselines. An active-sterile flavour oscillation could be unambiguously detected, as it distorts the spectral shape of each cell's measurement differently.
This contribution gives an overview on the Stereo experiment, along with details on the detector design, detection principle and the current status of data analysis.
DOI: https://doi.org/10.22323/1.314.0113
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.