PoS - Proceedings of Science
Volume 345 - International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (HardProbes2018) - Heavy Flavours & Quarkonia
Heavy-flavour production in the SACOT-mT scheme
H. Paukkunen* and I. Helenius
Full text: pdf
Pre-published on: January 11, 2019
Published on: April 24, 2019
Abstract
The hadroproduction of heavy-flavoured mesons has recently attracted a growing interest e.g. within the people involved in global analysis of proton and nuclear parton distribution functions, saturation physics, and physics of cosmic rays. In particular, the D- and B-meson measurements of LHCb at forward direction are sensitive to gluon dynamics at small $x$ and are one of the few perturbative small-$x$ probes before the next generation deep-inelastic-scattering experiments. In this talk, we will concentrate on the collinear-factorization approach to inclusive D-meson production and describe a novel implementation --- SACOT-$m_{\rm T}$ --- of the general-mass variable flavour number scheme (GM-VFNS). In the GM-VFNS framework the cross sections retain the full heavy-quark mass dependence at $p_{\rm T}=0$, but gradually reduce to the ordinary zero-mass results towards asymptotically high $p_{\rm T}$. However, the region of small (but non-zero) $p_{\rm T}$ has been somewhat problematic in the previous implementations of GM-VFNS, leading to divergent cross sections towards $p_{\rm T} \rightarrow 0$, unless the QCD scales are set in a particular way. Here, we provide a solution to this problem. In essence, the idea is to consistently account for the underlying energy-momentum conservation in the presence of a final-state heavy quark-antiquark pair. This automatically leads to a well-behaved GM-VFNS description of the cross sections across all $p_{\rm T}$ without a need to fine tune the QCD scales. The results are compared with the LHCb data and a very good agreement is found. We also compare to fixed-order based calculations and explain why they lead to approximately a factor of two lower D-meson production cross sections than the GM-VFNS approach.
DOI: https://doi.org/10.22323/1.345.0145
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.