The origin and nature of Ultra-High Energy Cosmic Rays (UHECRs) remain unsolved in contemporary astroparticle physics. To give an answer to these questions is rather challenging because of the extremely low flux of a few per km$^2$ per century at extreme energies (i.e. E $>$ 5$\times$10$^{19}$ eV). The central objective of the JEM-EUSO program,
Joint Experiment Missions for Extreme Universe Space Observatory, is the realisation of an ambitious space-based mission devoted to UHECR science. A super-wide-field telescope will look down from space onto the night sky to detect UV photons emitted from air showers generated by UHECRs in the atmosphere. The JEM-EUSO program includes several missions from ground (EUSO-TA), from stratospheric balloons (EUSO-Balloon, EUSO-SPB1, EUSO-SPB2), and from space (TUS, Mini-EUSO) employing fluorescence detectors to demonstrate the UHECR observation from space and prepare the large size missions K-EUSO and POEMMA. We review the scientifical objectives associated with the developing projects of the JEM-EUSO program and the technological achievements allowing them.