PoS - Proceedings of Science
Volume 363 - 37th International Symposium on Lattice Field Theory (LATTICE2019) - Main session
Evading the model sign problem in the PNJL model with repulsive vector-type interaction via path optimization
A. Ohnishi*, Y. Mori and K. Kashiwa
Full text: pdf
Pre-published on: January 04, 2020
Published on: August 27, 2020
Abstract
We discuss the sign problem in the Polyakov loop extended Nambu--Jona-Lasinio model with repulsive vector-type interaction by using the path optimization method. In this model, both of the Polyakov loop and the vector-type interaction cause the model sign problem, and several prescriptions have been utilized even in the mean field treatment. In the path optimization method, integration variables are complexified and the integration path (manifold) is optimized to evade the sign problem, or equivalently to enhance the average phase factor. Within the homogeneous field ansatz, the path is optimized by using the feedforward neural network. We find that the assumptions adopted in previous works, $\mathrm{Re}\,A_8 \simeq 0$ and $\mathrm{Re}\,\omega \simeq 0$, can be justified from the Monte-Carlo configurations sampled on the optimized path. We also derive the Euler-Lagrange equation for the optimal path to satisfy. The two optimized paths, the solution of the Euler-Lagrange equation and the variationally optimized path, agree with each other in the region with large statistical weight.
DOI: https://doi.org/10.22323/1.363.0213
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.