The ENUBET Project. A high precision narrow-band neutrino beam
G. Brunetti*, F. Acerbi, G. Ballerini, M. Bonesini, A. Branca, C. Brizzolari,
S. Capelli, S. Carturan, M.G. Catanesi, S. Cecchini, N. Charitonidis, F. Cindolo, G. Collazuol, E. Conti, F.D. Corso, C. Delogu, G.D. Rosa, A. Falcone, B. Goddard, A. Gola, C. Jollet, V. Kain, B. Klicek, Y.G. Kudenko, M. Laveder, A. Longhin, L. Ludovici, E. Lutsenko, L. Magaletti, G. Mandrioli, A. Margotti, V. Mascagna, N. Mauri, L. Meazza, A. Meregaglia, M. Mezzetto, A. Paoloni, M. Pari, E. Parozzi, L. Pasqualini, G. Paternoster, L. Patrizii, M. Pozzato, M. Prest, F. Pupilli, E. Radicioni, C. Riccio, A.C. Ruggeri, C. Scian, G. Sirri, M. Soldani, M. Stipcevic, M. Tenti, F. Terranova, M. Torti, E. Vallazza, F. Velotti, M. Vesco and L. Votanoet al. (click to show)
Pre-published on:
June 10, 2020
Published on:
November 12, 2020
Abstract
The knowledge of initial flux, energy and flavor of neutrino beams is currently the main limitation for a precise measurement of neutrino cross sections. The ENUBET project is studying a facility based on a narrow band neutrino beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged leptons in an instrumented decay tunnel. In particular, the identification of large-angle positrons from $K_{e3}$ decays at single particle level can potentially reduce the $\nu_{e}$ flux uncertainty at the level of 1%.
The ENUBET Collaboration presented at EPS-HEP2019 the advances in the design and simulation of the hadron beam line, the performance of positron tagger prototypes tested at CERN beamlines, a full simulation of the positron reconstruction chain and the expected physics reach.
DOI: https://doi.org/10.22323/1.364.0387
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.