PoS - Proceedings of Science
Volume 376 - Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2019) - Workshop on Quantum Geometry, Field Theory and Gravity
New perspectives on the emergence of (3+1)D expanding space-time in the Lorentzian type IIB matrix model
J. Nishimura
Full text: pdf
Published on: August 18, 2020
Abstract
The type IIB matrix model is a promising candidate for a nonperturbative formulation of superstring theory. In the Lorentzian version, in particular, the emergence of (3+1)D expanding space-time was observed by Monte Carlo studies of this model. Here we provide new perspectives on the (3+1)D expanding space-time that have arised from recent studies.
First it was found that the matrix configurations generated by the simulation are singular in that the submatrices representing the expanding 3D space have only two large eigenvalues associated with the Pauli matrices. This problem was conjectured to occur due to the approximation used to avoid the sign problem in simulating the model. In order to confirm this conjecture, the complex Langevin method was applied to overcome the sign problem instead of using the approximation. The results indeed showed a clear departure from the Pauli-matrix structure, while the (3+1)D expanding behavior remained unaltered. It was also found that classical solutions obtained within a certain ansatz show quite generically a (3+1)D expanding behavior with smooth space-time structure.
DOI: https://doi.org/10.22323/1.376.0178
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.