Real-time flavour tagging selection in ATLAS
C. Varni* on behalf of the ATLAS Collaboration
Pre-published on:
February 09, 2021
Published on:
April 15, 2021
Abstract
In high-energy physics experiments, online selection is crucial to select interesting collisions from the large data volume. ATLAS b-jet triggers are designed to identify heavy-flavour content in real-time and provide the only option to efficiently record events with fully hadronic final states containing b-jets. In doing so, two different, but related, challenges are faced. The physics goal is to optimise as far as possible the rejection of light jets, while retaining a high efficiency on selecting b-jets and maintaining affordable trigger rates without raising jet energy thresholds. This maps into a challenging computing task, as tracks and their corresponding vertexes must be reconstructed and analysed for each jet above the desired threshold, regardless of the increasingly harsh pile-up conditions. We present an overview of the ATLAS strategy for online b-jet selection for the LHC Run 2, including the use of novel methods and sophisticated algorithms designed to face the above mentioned challenges. The evolution of the performance of b-jet triggers in Run 2 data is presented, including the use of novel triggers designed to select events containing heavy-flavour jets in heavy-ion collisions.
DOI: https://doi.org/10.22323/1.390.0792
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.