PoS - Proceedings of Science
Volume 395 - 37th International Cosmic Ray Conference (ICRC2021) - NU - Neutrinos & Muons
Reaching the EeV frontier in neutrino-nucleon cross sections in upcoming neutrino telescopes
V. Valera Baca* and M. Bustamante
Full text: pdf
Pre-published on: July 13, 2021
Published on: March 18, 2022
Abstract
Measuring neutrino interactions with matter is arduous but rewarding. To date, experiments have measured the neutrino-nucleon cross section in the MeV-PeV range, using terrestrial and astrophysical neutrinos. We endeavor to push that measurement to the EeV scale, in order to test competing expectations of the deep structure of nucleons and possibly reveal new neutrino interactions. Cosmogenic neutrinos, long-sought but still undiscovered, provide the only feasible way forward. However, because their flux is low, they have evaded detection so far. Fortunately, upcoming in-ice radio-detection neutrino telescopes, like RNO-G and the radio component of IceCube-Gen2, have a real chance of discovering them in the next 10-20 years. In preparation, we perform the first detailed study of their sensitivity to the deep-inelastic-scattering neutrino-nucleon cross section at EeV energies, extracted from the attenuation of the cosmogenic neutrino flux as it traverses the Earth across different directions. We use up-to-date predictions and tools at every step: in the flux of cosmogenic neutrinos---predicted using recent ultra-high-energy cosmic-ray measurements---in their propagation inside the Earth---computed using leading and sub-leading neutrino interactions---and in their detection in radio-based neutrino telescopes---based on advanced simulated detector responses.
DOI: https://doi.org/10.22323/1.395.1200
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.