PoS - Proceedings of Science
Volume 395 - 37th International Cosmic Ray Conference (ICRC2021) - SH - Solar & Heliospheric
Periodic variations of GCR intensity and anisotropy related to solar rotation by ACE/CRIS, STEREO, SOHO/EPHIN and neutron monitors observations
R. Modzelewska* and A. Gil
Full text: pdf
Pre-published on: July 15, 2021
Published on: March 18, 2022
Abstract
We study the periodic variations of galactic cosmic rays (GCRs) related to solar rotation based on neutron monitor (NM), ACE/CRIS, STEREO and SOHO/EPHIN measurements, in solar minima 23/24 and 24/25 characterized by the opposite polarities of solar magnetic cycle. Now there is an opportunity to re-analyze the polarity dependence of the amplitudes of the recurrent GCR variations in 2007-2009 for negative A < 0 solar magnetic polarity and to compare it with the clear periodic variations related to solar rotation in 2017-2019 for positive A > 0. We use the Fourier analysis method to study the periodicity in the GCR fluxes. Since the GCR recurrence is a consequence of solar rotation, we analyze not only GCR fluxes, but also solar and heliospheric parameters examining the relationships between the 27-day GCR variations and heliospheric, as well as, solar wind parameters. We find that the polarity dependence of the amplitudes of the 27-day variations of the GCR intensity and anisotropy for NMs data is kept for the last two solar minima: 23/24 (2007-2009) and 24/25 (2017-2019) with greater amplitudes in positive A > 0 solar magnetic polarity. ACE/CRIS, SOHO/EPHIN and STEREO measurements are not governed by this principle of greater amplitudes in positive A > 0 polarity. GCR recurrence caused by the solar rotation for low energy (< 1GeV) cosmic rays is more sensitive to the enhanced diffusion effects, resulting in the same level of the 27-day amplitudes for positive and negative polarities. While high energy (> 1GeV) cosmic rays registered by NMs, are more sensitive to the large-scale drift effect leading to the 22-year Hale cycle in the 27-day GCR variation, with the larger amplitudes in the A > 0 polarity than in the A < 0.
DOI: https://doi.org/10.22323/1.395.1271
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.